目标检测 COCO数据集测评指标及算法AP排行榜

参考  目标检测 COCO数据集测评指标及算法AP排行榜!! - 云+社区 - 腾讯云

目标检测COCO数据集上各算法AP排行榜:

CodaLab - Competition

进入 coco 官网如下:
在这里插入图片描述
进入 Evaluate/detection如下:
在这里插入图片描述
点击第一段上面 uploaded,进入界面:
在这里插入图片描述
点击(1)里面的 condaLab 然后选择 Competitions 进入界面
在这里插入图片描述
点击 COCO Image Captioning Challenge 选择年份即可查看 算法在COCO数据上的AP排行
在这里插入图片描述


COCO数据集测评指标

官网
COCO - Common Objects in Context
COCO - Common Objects in Context
对应翻译
COCO目标检测测评指标 - 简书
代码
COCO数据集深入理解_weixin_34236497的博客-CSDN博客

### Pascal VOC、COCO 和 ImageNet 数据集目标检测评估指标 #### Pascal VOC 数据集的评估指标 Pascal VOC 数据集采用了一系列经典的评估指标来衡量目标检测模型的表现。其中最核心的两个概念是查准率(Precision)和查全率(Recall)。 - **Precision (查准率)** 表示预测为目标的数量中有多少比例确实是真正的目标对象[^1]。 - **Recall (查全率)** 则表示实际目标数量中有多少比例被成功检测出来。 为了综合考虑 Precision 和 Recall 的表现,引入了 Average Precision (AP) 这一指标。在 Pascal VOC 中,通常会设定 IoU 阈值为 0.5 来判断检测框是否匹配真实框。随后通过计算 PR 曲线下的面积得出 AP 值[^3]。最后,mAP(mean Average Precision)是对所有类别 AP 取平均的结果,用于整体性能评估。 #### COCO 数据集的评估指标 相较于 Pascal VOC,COCO 数据集采用了更为严格的评价体系。它不仅关注单一 IoU 阈值的情况,还扩展到了多个 IoU 范围内的表现分析。具体而言: - 平均精度 AP 定义为不同 IoU 下的 AP 均值,IoU 范围从 0.5 至 0.95,步长为 0.05[^2]。 - 此外还有针对特定 IoU 设置的子项,例如 $ \text{AP}_{\text{IoU}=0.5} $ 或者更严苛条件下的 $ \text{AP}_{\text{IoU}=0.75} $。 - 同样存在 mAP 计算方式,但其覆盖范围更大且更具挑战性。 另外值得注意的是 AR(Average Recall),该值反映了每张图片能够正确识别出的目标数目上限。AR 经常配合最大探测次数 k 使用 ($ \text{AR}_k $),以体现算法效率与效果之间的平衡关系。 #### ImageNet 数据集的评估指标 虽然 ImageNet 更广为人知是因为它的分类任务,但在涉及目标定位的任务部分也有相应的评测机制。然而相比前两者,ImageNet 在这方面并没有形成统一固定的模式;一般情况下仍沿用类似于 Pascal VOC 或 COCO 所定义的标准来进行比较研究[^4]。 ```python def calculate_ap(precision_list, recall_thresholds=[0, 0.1, ..., 1]): ap_values = [] for threshold in recall_thresholds: filtered_precisions = [p for r, p in zip(recalls, precisions) if r >= threshold] max_precision_at_recall = max(filtered_precisions) if filtered_precisions else 0 ap_values.append(max_precision_at_recall) return sum(ap_values)/len(ap_values) # Example usage of the function with hypothetical data points. recalls = [0.1, 0.2, ... , 1.0] precisions = [... corresponding values to recalls... ] ap_value = calculate_ap(precisions) print(f"The calculated AP value is {ap_value}") ``` 上述代码片段展示了如何基于给定的一组精确度(Precision)-召回率(Recall)对按照一定规则计算得到单类别的AP值的一个简化版本实现过程。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值