【详解+推导!!】Policy Gradient 策略梯度法

Policy Gradient,策略梯度法是强化学习中的一种常用方法。
比较详细的推导可以看:https://datawhalechina.github.io/easy-rl/#/chapter4/chapter4?id=tips

1. 定义强化学习的问题

强化学习由三个组件构成:Actor、Environment、Reward Function。
在这里插入图片描述Actor 决定如何执行下一个动作;
Environment 就是电脑主机或者对手会根据Actor的动作产生变化;
Reward Function 会根据我们做的动作进行打分。

在强化学习里面 Environment 和 Reward Function 都是不可操作的,我们的目标就是调整Actor的策略(Policy)获得最大的奖励期望。

在这里插入图片描述

  • 一场游戏叫做一个 回合(episode) 或者 试验(trial);

  • 过程就是Env先初始化一个状态 s 1 s_1 s1,而后我们的Actor根据该初始状态做出动作;

  • 产生一个Trajectory,我们用 τ \tau τ表示,如下:
    τ = { s 1 , a 1 , s 2 , a 2 , . . . , s t , a t } \tau = \{s_1, a_1, s_2, a_2, ..., s_t, a_t \} τ={ s1,a1,s2,a2,...,st,at}

2. Policy Network

我们使用神经网络来完成动作的选择,以打电动游戏为例子:

我们有策略网络来实现策略 π \pi π,网络的参数为 θ \theta θ,输入为游戏的图像,输出的我们的操作。
在这里插入图片描述在一场游戏中(一个episode),我们的Actor可以与环境交互产生一个回合的记录序列 Trajectory:
τ = { s 1 , a 1 , s 2 , a 2 , . . . , s t , a t } \tau = \{s_1, a_1, s_2, a_2, ..., s_t, a_t \} τ={ s1,a1,s2,a2,...,st,at}
每一个 τ \tau τ产生的概率为:
p θ ( τ ) = p ( s 1 ) p θ ( a 1 ∣ s 1 ) p ( s 2 ∣ s 1 , a 1 ) p θ ( a 2 ∣ s 2 ) p ( s 3 ∣ s 2 , a 2 ) . . . = p ( s 1 ) ∏ t = 1 T p θ ( a t ∣ s t ) p ( s t + 1 ∣ s t , a t ) \begin{aligned} p_\theta(\tau) &= p(s_1)p_\theta(a_1|s_1)p(s_2|s_1, a_1)p_\theta(a_2|s_2)p(s_3|s_2,a_2)... \\ &=p(s_1)\prod_{t=1}^Tp_\theta(a_t|s_t)p(s_{t+1}|s_t, a_t) \end{aligned} pθ(τ)=p(s1)pθ(a1s1)p(s2s1,a1)pθ(a2s2)p(s3s2,a2)...=p(s1)t=1Tpθ(atst)p(st+1st,at)
每一个 τ \tau τ的总回报为:
R ( τ ) = ∑ t = 1 T r t R(\tau) = \sum_{t=1}^Tr_t R(τ)=t=1Trt
我们的 τ \tau τ是利用Actor与环境互动产生的,在动作选择过程中存在很多随机性,环境本身也存在很多随机性,所以 R ( τ ) R(\tau) R(τ)是一个随机变量(random variable)。

所以我们不能用 R ( τ ) R(\tau) R(τ)评价一个策略网络 θ \theta θ的好坏,但是我们可以使用 R ( τ ) R(\tau) R(τ)的期望评价:
E [ R ( τ ) ] = R ˉ ( τ )

  • 18
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
DDPG(Deep Deterministic Policy Gradient)是一种用于连续动作空间的强化学习,可以用于解决许多控制问题。在DDPG算中,策略网络的参数更新需要计算policy gradient梯度。 在MATLAB中,我们可以利用深度学习工具箱来实现DDPG算。下面是计算DDPG策略网络的policy gradient的步骤: 1. 首先,定义和初始化DDPG的网络架构,包括策略网络和值函数网络。策略网络参数化了一个确定性策略π,输入为状态s,输出为动作a。值函数网络是为了辅助策略网络的训练,输入为状态s和动作a,输出为对应的Q值。 2. 使用现有的经验回放缓冲池,从中随机选择一定数量的样本。每个样本包含当前状态s,选定的动作a,奖励r,下一状态s'以及一个指示终止状态的标志位done。 3. 对于选定的每个样本,使用策略网络计算当前状态s下的动作a,并计算其对应的Q值。 4. 将计算得到的动作a和Q值作为目标,使用值函数网络对当前状态s和动作a进行预测得到Q值的估计。 5. 利用目标Q值和估计Q值的差异,计算出policy gradient梯度。 6. 利用计算得到的梯度来更新策略网络的参数,使得策略网络的输出更适应目标Q值。 7. 重复以上步骤,直至达到收敛条件或指定的训练轮数。 以上是MATLAB中计算DDPG策略网络的policy gradient的一般步骤。具体实现还需要根据具体的问题和网络架构进行调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值