在人工智能领域,知识图谱已成为表示和存储结构化知识的重要工具。然而,如何有效地利用这些庞大而复杂的知识网络,一直是研究人员面临的挑战。近年来,知识图谱嵌入(KGE)技术应运而生,它试图将知识图谱中的实体和关系映射到低维向量空间,以便于机器学习算法进行处理和推理。
尽管KGE方法在各种任务中得到广泛应用,但它们在推理能力上仍存在局限性。为了更好地理解和比较不同KGE方法的推理能力,莫斯科华为研究中心的研究团队提出了一个创新的数学框架。这项研究不仅深入分析了现有方法的优劣,还提出了一种新的KGE方法,有望推动该领域的进一步发展。
知识图谱嵌入:AI理解世界的新途径
知识图谱可以被视为一个多关系有向图,其中节点代表实体,边代表实体间的关系。例如,“巴黎"和"法国"是两个实体,它们之间的关系可能是"首都”。知识图谱嵌入的目标是将这些离散的符号表示转化为连续的向量表示,使得向量空间中的距离和方向能够反映实体和关系的语义信息。
研究人员高杰星博士解释道:“想象一下,我们将’巴黎’、'法国’和’首都’这样的概念映射到一个多维空间中的点或向量。如果我们能够设计一种巧妙的映射方式,使得在这个空间中,'巴黎’加上’首都’的向量接近于’法国’的向量,那么我们就可以说这个嵌入方法捕捉到了知识图谱中蕴含的语义关系。”
这种表示方法不仅能够压缩知识图谱的存储空间,更重要的是,它为机器学习算法提供了一种处理结构化知识的新途径。通过在这个连续的向量空间中进行运算,AI系统可以执行各种推理任务,如知识图谱补全、链接预测、实体分类等。