在人工智能领域,通往通用人工智能(AGI)的道路上,研究人员一直在探索开发"语言智能体"的可能性。这些语言智能体本质上是复杂的大型语言模型(LLM)管道,涉及各种提示技术和工具使用方法。虽然语言智能体在许多现实世界任务中展现出令人印象深刻的能力,但目前语言智能体研究的一个根本局限性在于它们过于以模型为中心,或者说以工程为中心。这意味着语言智能体的提示、工具和管道的进步,需要人类专家付出大量手动工程努力,而不是能够从数据中自动学习。
从工程中心到数据中心:自我进化的关键
AIWaves公司的研究团队认为,语言智能体从以模型为中心、以工程为中心向以数据为中心转变,即在环境中自主学习和进化的能力,是它们可能实现AGI的关键。在最新发表于arXiv的论文《Symbolic Learning Enables Self-Evolving Agents》中,研究团队提出了一个突破性的框架 - 智能体符号学习(agent symbolic learning),这一系统性框架使语言智能体能够以数据为中心的方式,使用符号优化器自主优化自身。
智能体作为符号网络
研究人员将智能体视为符号网络,其中可学习的权重由提示、工具以及它们的堆叠方式定义。智能体符号学习旨在通过模仿连接主义学习中两个基本算法 - 反向传播和梯度下降,来优化语言智能体内的符号网络。与处理数值权重不同,智能体符号学习使用自然语言模拟权重、损失和梯度。
实验验证自我进化能力
研究团队在标准基准和复杂的现实世界任务上进行了概念验证实验,结果表明智能体符号学习使语言