🏠 LMMs-Lab 主页 | 🎉 博客 | 📚 文档 | 🤗 Huggingface 数据集 | discord/lmms-eval
公告
- [2024年7月] 🎉🎉 欢迎新任务 LongVideoBench、MMStar 和新模型 Mantis。
- [2024年7月] 🎉🎉 我们发布了技术报告和 LiveBench!
- [2024年7月] 👨💻👨💻 lmms-eval/v0.2.1 已升级,支持更多模型,包括 LongVA、InterVL-2、VILA,以及更多评估任务,例如 Details Captions、MLVU、WildVision-Bench、VITATECS 和 LLaVA-Interleave-Bench。
- [2024年6月] 🎬🎬 lmms-eval/v0.2.0 已升级,支持对 LLaVA-NeXT Video 和 Gemini 1.5 Pro 等视频模型进行视频评估,涵盖 EgoSchema、PerceptionTest、VideoMME 等任务。更多详细信息请参阅博客。
- [2024年3月] 📝📝 我们发布了 lmms-eval 的第一个版本,更多详细信息请参阅博客。
为何选择 lmms-eval?
当今时代,我们正朝着创造通用人工智能(AGI)的目标迈进,这与 20 世纪 60 年代登月计划的热情如出一辙。推动这一旅程的是先进的大型语言模型(LLMs)和大型多模态模型(LMMs),这些复杂的系统能够理解、学习和执行各种人类任务。
为了衡量这些模型的先进程度,我们使用各种评估基准。这些基准是帮助我们了解模型能力的工具,向我们展示了我们距离实现 AGI 有多近。
然而,寻找和使用这些基准是一项巨大的挑战。必要的基准和数据集分散在 Google Drive、Dropbox 以及不同的学校和研究实验室网站等各个地方。这就像一场寻宝游戏,但地图却散落在各处。
在语言模型领域,lm-evaluation-harness 的工作开创了一个宝贵的先例。他们提供了集成的模型和数据接口,支持快速评估语言模型,并作为 open-llm-leaderboard 的后端支持框架,逐渐成为基础模型时代的底层生态系统。
我们借鉴了 lm-evaluation-harness 精致高效的设计,推出了 lmms-eval,这是一个专为一致且高效地评估 LMM 而精心打造的评估框架。
安装
要正式使用,您可以通过运行以下命令从 PyPI 安装软件包:
pip install lmms-eval
要进行开发,您可以通过克隆存储库并运行以下命令来安装软件包:
git clone https://github.com/EvolvingLMMs-Lab/lmms-eval
cd lmms-eval
pip install -e .
如果您想测试 LLaVA,您需要从 LLaVA 克隆他们的存储库:
# 对于 LLaVA 1.5
# git clone https://github.com/haotian-liu/LLaVA
# cd LLaVA
# pip install -e .
# 对于 LLaVA-Next (1.6)
git clone https://github.com/LLaVA-VL/LLaVA-NeXT
cd LLaVA-NeXT
pip install -e .
复现 LLaVA-1.5 论文结果
您可以查看环境安装脚本和 torch 环境信息,以复现 LLaVA-1.5 论文的结果。我们发现 torch/cuda 版本的差异会导致结果略有不同,我们提供了在不同环境下检查结果的方法。
如果您想在 coco、refcoco 和 nocaps 等字幕数据集上进行测试,您需要安装 java==1.8.0,以便 pycocoeval API 正常工作。如果您没有安装,可以使用 conda 进行安装:
conda install openjdk=8
然后,您可以通过 java -version
命令检查您的 java 版本。
LLaVA 系列模型的综合评估结果
如下表所示,我们的目标是提供详细信息,帮助读者了解 lmms-eval 中包含的数据集以及有关这些数据集的一些具体细节(我们感谢读者在评估过程中提出的任何更正)。
我们提供了一个 Google 表格,其中包含 LLaVA 系列模型在不同数据集上的详细结果。您可以通过以下链接访问该表格:https://docs.google.com/spreadsheets/d/1LqWjH55v-jmRaOfro2zT7J5_tpscDm2g-TttdN2_zDg/edit?usp=sharing。这是一个实时更新的表格,我们会不断添加新的结果。
我们还提供了从 Weights & Biases 导出的原始数据,其中包含 LLaVA 系列模型在不同数据集上的详细结果。您可以通过以下链接访问原始数据:https://huggingface.co/datasets/lmms-lab/llava-eval-results。
我们的开发将在主分支上继续进行,我们鼓励您就所需的功能以及如何进一步改进库提出反馈,或者在 GitHub 上的 issues 或 PR 中提出问题。
多种用途
-
在 MME 上评估 LLaVA
python3 -m accelerate.commands.launch \ --num_processes=8 \ -m lmms_eval \ --model llava \ --model_args pretrained="liuhaotian/llava-v1.5-7b" \ --tasks mme \ --batch_size 1 \ --log_samples \ --log_samples_suffix llava_v1.5_mme \ --output_path ./logs/
-
在多个数据集上评估 LLaVA
python3 -m accelerate.commands.launch \ --num_processes=8 \ -m lmms_eval \ --model llava \ --model_args pretrained="liuhaotian/llava-v1.5-7b" \ --tasks mme,mmbench_en \ --batch_size 1 \ --log_samples \ --log_samples_suffix llava_v1.5_mme_mmbenchen \ --output_path ./logs/
对于其他 LLaVA 变体,请更改
model_args
中的conv_template
。conv_template
是lmms_eval/models/llava.py
中 LLaVA 初始化函数的一个参数,您可以在 LLaVA 的代码中找到相应的值,可能在llava/conversations.py
中的conv_templates
字典变量中。python3 -m accelerate.commands.launch \ --num_processes=8 \ -m lmms_eval \ --model llava \ --model_args pretrained="liuhaotian/llava-v1.6-mistral-7b,conv_template=mistral_instruct" \ --tasks mme,mmbench_en \ --batch_size 1 \ --log_samples \ --log_samples_suffix llava_v1.5_mme_mmbenchen \ --output_path ./logs/
-
评估更大的 LMMs (llava-v1.6-34b)
python3 -m accelerate.commands.launch \ --num_processes=8 \ -m lmms_eval \ --model llava \ --model_args pretrained="liuhaotian/llava-v1.6-34b,conv_template=mistral_direct" \ --tasks mme,mmbench_en \ --batch_size 1 \ --log_samples \ --log_samples_suffix llava_v1.5_mme_mmbenchen \ --output_path ./logs/
-
使用一组配置进行评估,支持评估多个模型和数据集
python3 -m accelerate.commands.launch --num_processes=8 -m lmms_eval --config ./miscs/example_eval.yaml
-
评估视频模型 (llava-next-video-32B)
accelerate launch --num_processes 8 --main_process_port 12345 -m lmms_eval \ --model llavavid \ --model_args pretrained=lmms-lab/LLaVA-NeXT-Video-32B-Qwen,conv_template=qwen_1_5,video_decode_backend=decord,max_frames_num=32,mm_spatial_pool_mode=average,mm_newline_position=grid,mm_resampler_location=after \ --tasks videomme \ --batch_size 1 \ --log_samples \ --log_samples_suffix llava_vid_32B \ --output_path ./logs/
-
使用简单的模型分片评估更大的模型 (llava-next-72b)
python3 -m lmms_eval \ --model=llava \ --model_args=pretrained=lmms-lab/llava-next-72b,conv_template=qwen_1_5,device_map=auto,model_name=llava_qwen \ --tasks=pope,vizwiz_vqa_val,scienceqa_img \ --batch_size=1 \ --log_samples \ --log_samples_suffix=llava_qwen \ --output_path="./logs/" \ --wandb_args=project=lmms-eval,job_type=eval,entity=llava-vl
-
使用 SGLang 评估更大的模型 (llava-next-72b)
python3 -m lmms_eval \ --model=llava_sglang \ --model_args=pretrained=lmms-lab/llava-next-72b,tokenizer=lmms-lab/llavanext-qwen-tokenizer,conv_template=chatml-llava,tp_size=8,parallel=8 \ --tasks=mme \ --batch_size=1 \ --log_samples \ --log_samples_suffix=llava_qwen \ --output_path=./logs/ \ --verbosity=INFO
支持的模型
有关更多详细信息,请查看支持的模型。
支持的任务
有关更多详细信息,请查看支持的任务。
添加自定义模型和数据集
请参阅我们的文档。
致谢
lmms_eval 是 lm-eval-harness 的一个分支。我们建议您通读 lm-eval-harness 的文档以获取相关信息。
以下是我们对原始 API 所做的更改:
- 构建上下文现在仅传入
idx
,并在模型响应阶段处理图像和文档。这是因为数据集现在包含大量图像,我们无法像原始的 lm-eval-harness 那样将它们存储在文档中,否则 CPU 内存会爆炸。 Instance.args
(lmms_eval/api/instance.py
) 现在包含一个要输入到 LMMs 的图像列表。- lm-eval-harness 支持所有 HF 语言模型作为单个模型类。目前,由于 HF 中 LMMs 的输入/输出格式尚未统一,因此无法做到这一点。因此,我们必须为每个 LMMs 模型创建一个新类。这并不理想,我们将在未来尝试统一它们。
在我们项目的初始阶段,我们要感谢:
- Xiang Yue、Jingkang Yang、Dong Guo 和 Sheng Shen 参与了早期的讨论和测试。
在从 v0.1 到 v0.2 的过程中,我们要感谢来自拉取请求 (PR) 的社区支持:
详细信息请参阅 lmms-eval/v0.2.0 发行说明。
数据集:
- VCR:视觉字幕恢复(来自 MILA 的官方版本)
- ConBench(来自北京大学/字节跳动的官方版本)
- MathVerse(来自香港中文大学的官方版本)
- MM-UPD(来自东京大学的官方版本)
- WebSRC(来自 Hunter Heiden)
- ScreeSpot(来自 Hunter Heiden)
- RealworldQA(来自南洋理工大学的 Fanyi Pu)
- 多语言 LLaVA-W(来自英属哥伦比亚大学的 Gagan Bhatia)
模型:
- LLaVA-HF(来自 Huggingface 的官方版本)
- Idefics-2(来自 lmms-lab 团队)
- microsoft/Phi-3-Vision(来自微软的官方版本)
- LLaVA-SGlang(来自 lmms-lab 团队)
引用
@misc{lmms_eval2024,
title={LMMs-Eval: Accelerating the Development of Large Multimoal Models},
url={https://github.com/EvolvingLMMs-Lab/lmms-eval},
author={Bo Li*, Peiyuan Zhang*, Kaichen Zhang*, Fanyi Pu*, Xinrun Du, Yuhao Dong, Haotian Liu, Yuanhan Zhang, Ge Zhang, Chunyuan Li and Ziwei Liu},
publisher = {Zenodo},
version = {v0.1.0},
month={March},
year={2024}
}