通过 DSPy 和 LangChain 优化推文生成的魔法

在快速发展的自然语言处理领域,生成高质量文本的能力显得尤为重要。尤其是在社交媒体时代,如何生成简洁、有趣且信息丰富的推文,成了许多开发者面临的挑战。在这篇文章中,我们将探索如何通过 DSPy 和 LangChain 结合的方式,构建一个高效的推文生成系统。这个过程不仅涉及到模型的优化,还包括如何将复杂的链式结构转化为易于使用的模块。

🔧 DSPy 的强大功能

DSPy 的一个最强大的特点就是其优化器。 DSPy 的优化器能够对任何语言模型(LM)系统进行调节,以最大化特定的目标。例如,它可以针对新数据或新的语言模型调整提示语或模型权重。这样的灵活性使得 DSPy 在面对日益复杂的 NLP 任务时,能够轻松应对,并且提升代码的适应性。

通过 DSPy,我们可以避免那些繁琐的手动提示工程、复杂的合成数据生成管道设计,或是复杂的微调管道设计。优化器的使用,帮助开发者将注意力从繁琐的实现细节转移到模型性能提升的更高层次。

📦 设置环境

首先,我们需要安装必要的依赖项,以确保 DSPy 和 LangChain 能够正常工作。在 Jupyter Notebook 中,我们可以使用以下命令:

# 安装所需依赖
# %pip install -U dspy-ai
# %pip install -U openai jinja2
# %pip install -U langchain langchain-community langchain-openai langchain-core

接下来,我们将导入 DSPy 并配置默认的语言模型和检索模型。通过这样的设置,我们可以让系统更好地理解我们要完成的任务。

import dspy
from dspy.evaluate.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShotWithRandomSearch

colbertv2 = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.configure(rm=colbertv2)

🌐 建立 LangChain 表达式

为了更好地说明,我们将设定一个任务:构建一个用于生成信息丰富推文的检索增强生成(RAG)系统。该系统的输入将是一个复杂的问题,输出则是一个有趣且正确回答该问题的推文。

我们将使用 LangChain 的表达式语言(LCEL)来构建这个系统。简单来说,我们的提示可以定义为:

给定 {context},回答问题 {question} 作为一条推文。

接下来,我们会从 LangChain 导入必要的模块,构建这个链式结构。

from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

prompt = PromptTemplate.from_template("给定 {context},回答问题 `{question}` 作为一条推文。")
vanilla_chain = RunnablePassthrough.assign(context=retrieve) | prompt | llm | StrOutputParser()

🔄 转换为 DSPy 模块

为了优化生成的推文,我们需要将这个链式结构转化为 DSPy 模块。为此,我们创建了两个新的模块:LangChainPredictLangChainModule

from dspy.predict.langchain import LangChainPredict, LangChainModule

zeroshot_chain = RunnablePassthrough.assign(context=retrieve) | LangChainPredict(prompt, llm) | StrOutputParser()
zeroshot_chain = LangChainModule(zeroshot_chain)

此时,我们的推文生成系统已经能够运行,我们将其称为 zeroshot_chain

📊 评估模块的性能

为了检验我们新创建的 LangChainModule 的性能,我们可以通过提出问题来生成推文。

question = "Eddy Mazzoleni 出生在哪个地区?"
zeroshot_chain.invoke({"question": question})

通过这种方式,我们可以生成推文并查看其质量。检视问题和答案的过程非常重要,可以帮助我们更好地理解系统的工作方式。

📈 评估模块的质量

要评估推文的质量,我们需要定义我们的评估标准。我们可以考虑以下属性:推文要(1)事实正确,(2)基于真实来源,并且(3)对人们具有吸引力。

接下来,我们需要加载一些示例数据,以便进行调优和训练。

from tweet_metric import metric, trainset, valset, devset

我们的训练集、验证集和开发集包含了大量的问题和答案。虽然这些数据并不包括推文本身,但我们的评估标准将能够有效地评估生成的推文。

🔍 优化模块

在 DSPy 中,有多种优化器可供选择。当前的默认优化器是 BootstrapFewShotWithRandomSearch。它通过对训练数据运行程序,并记录每次的输入和输出,寻找最佳的示例进行优化。

optimizer = BootstrapFewShotWithRandomSearch(metric=metric, max_bootstrapped_demos=3, num_candidate_programs=3)
optimized_chain = optimizer.compile(zeroshot_chain, trainset=trainset, valset=valset)

优化的过程可能需要几分钟,这段时间内,系统会尝试不断改进生成的推文质量。

🚀 检查优化后的链条

最终,我们将评估优化后的链条性能。我们可以再次提出问题,看看优化后的系统如何生成推文。

optimized_chain.invoke({"question": question})

在对优化后的链进行评估后,我们发现相较于初始的 43% 的性能,优化后的系统能够达到 52% 的准确率,这意味着我们获得了 21% 的相对提升。

🌐 结论

通过将 DSPy 和 LangChain 的强大功能结合起来,我们能够构建一个高效的推文生成系统。这个系统不仅能够生成准确的信息,还能确保推文的吸引力和参与度。在这个快速发展的领域,灵活的优化和模块化设计将是我们成功的关键。

参考文献

  1. Harrison Chase. Twitter Profile
  2. DSPy Documentation.
  3. LangChain Documentation.
  4. OpenAI API Documentation.
  5. Python Programming Language.
  • 13
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值