SELF-RAG: 当AI学会自我反思,检索、生成与批评能力全面提升

🌟 引言

人工智能的发展日新月异,但如何让AI具备更强的推理能力、更准确的事实性和更高质量的输出一直是研究的重点。近日,一篇发表在ICLR 2024(国际学习表示大会)的论文《SELF-RAG: Learning to Retrieve, Generate and Critique through self-reflection》(SELF-RAG:通过自我反思学习检索、生成和批评)引起了广泛关注。这篇由华盛顿大学和Allen人工智能研究所的研究人员共同完成的论文,提出了一种全新的框架,让AI模型在生成过程中能够进行自我反思,大幅提升了输出的质量和可靠性。让我们一起来探索一下这个令人兴奋的新技术吧!

🔍 SELF-RAG:一种全新的检索增强生成框架

SELF-RAG vs 传统RAG

传统的检索增强生成(RAG)方法通常是这样工作的:首先根据输入查询检索相关文档,然后将检索到的文档和查询一起输入到语言模型中生成回答。这种方法虽然在一定程度上提高了输出的事实性,但仍存在一些局限性:

  1. 检索过程是固定的,无法根据生成过程中的需求动态调整。
  2. 模型无法判断检索到的内容是否真的有用。
  3. 缺乏对自身输出的评估和改进机制。

而SELF-RAG框架则巧妙地解决了这些问题。它的核心思想是:让AI在生成过程中不断进行自我反思,根据需要灵活地进行检索,并对自己的输出进行多方面的评估和改进。

SELF-RAG

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值