🌟 引言
人工智能的发展日新月异,但如何让AI具备更强的推理能力、更准确的事实性和更高质量的输出一直是研究的重点。近日,一篇发表在ICLR 2024(国际学习表示大会)的论文《SELF-RAG: Learning to Retrieve, Generate and Critique through self-reflection》(SELF-RAG:通过自我反思学习检索、生成和批评)引起了广泛关注。这篇由华盛顿大学和Allen人工智能研究所的研究人员共同完成的论文,提出了一种全新的框架,让AI模型在生成过程中能够进行自我反思,大幅提升了输出的质量和可靠性。让我们一起来探索一下这个令人兴奋的新技术吧!
🔍 SELF-RAG:一种全新的检索增强生成框架
SELF-RAG vs 传统RAG
传统的检索增强生成(RAG)方法通常是这样工作的:首先根据输入查询检索相关文档,然后将检索到的文档和查询一起输入到语言模型中生成回答。这种方法虽然在一定程度上提高了输出的事实性,但仍存在一些局限性:
- 检索过程是固定的,无法根据生成过程中的需求动态调整。
- 模型无法判断检索到的内容是否真的有用。
- 缺乏对自身输出的评估和改进机制。
而SELF-RAG框架则巧妙地解决了这些问题。它的核心思想是:让AI在生成过程中不断进行自我反思,根据需要灵活地进行检索,并对自己的输出进行多方面的评估和改进。