双通道CNN通过并行处理两个独立的数据流或特征路径,实现更复杂的特征提取与融合。其核心在于利用多路径结构增强模型对异构数据或多样化特征的表达能力。
一、双通道CNN架构组成
-
输入通道
- 双输入模式:处理两种数据类型(如图像+文本、RGB+深度图)或同一数据的两种变换(如原图+边缘检测图)
- 单输入分流:通过数据增强生成两个视角(如不同裁剪区域)输入到双通道
-
特征提取路径
Channel A路径:卷积层 → ReLU → 池化层 → ...
Channel B路径:不同卷积核 → 激活函数 → 特殊池化策略
卷积操作公式: F