双通道卷积神经网络(CNN)架构详解

双通道CNN通过并行处理两个独立的数据流或特征路径,实现更复杂的特征提取与融合。其核心在于利用多路径结构增强模型对异构数据或多样化特征的表达能力。

一、双通道CNN架构组成
  1. 输入通道

    • 双输入模式:处理两种数据类型(如图像+文本、RGB+深度图)或同一数据的两种变换(如原图+边缘检测图)
    • 单输入分流:通过数据增强生成两个视角(如不同裁剪区域)输入到双通道
  2. 特征提取路径

    Channel A路径:卷积层 → ReLU → 池化层 → ... 
    Channel B路径:不同卷积核 → 激活函数 → 特殊池化策略
    

    卷积操作公式: F

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值