好发不卷!“双通道卷积神经网络”速通顶会指南!(含源码)

2025深度学习发论文&模型涨点之——双通道卷积神经网络

双通道卷积神经网络(Double Channel Convolutional Neural Network,DCNN)是一种特殊的卷积神经网络结构,它通过引入两个独立的卷积通道来处理输入数据,从而提高模型的性能和效率。

  • 双通道结构:双通道卷积神经网络由两个独立的卷积层组成,每个卷积层使用不同的卷积核提取特征,生成两个不同的特征图。这两个特征图可以单独进行后续的处理,也可以进行融合。

      • 特征提取:两个卷积层分别负责提取图像中的不同特征信息,例如一个通道提取空间信息,另一个通道提取语义信息。这种设计使得网络能够更全面地捕捉图像中的特征。

      • 特征融合:在卷积操作后,两个特征图通常会进行融合,形成最终的特征表示。这种融合可以是简单的拼接,也可以是通过双线性池化等更复杂的操作来实现。

      小编整理了一些双通道卷积神经网络【论文】合集,以下放出部分,全部论文PDF版皆可领取。

      需要的同学扫码添加我

      回复“双通道卷积神经网络”即可全部领取

      图片

      论文精选

      论文1:

      Dual-branch convolutional neural network for robust camera model identification

      用于鲁棒相机型号识别的双分支卷积神经网络

      方法

          • 双分支架构:提出了一种双分支卷积神经网络(CNN),一个分支直接使用三通道RGB图像,另一个分支使用通过高通滤波得到的噪声图像。

            高通滤波:通过高通滤波提取图像的噪声特征,以增强相机型号特定的指纹信息。

            特征融合:将RGB图像特征和噪声图像特征通过级联融合,以获取更鲁棒的特征表示。

            分类网络:使用两层全连接网络对融合后的特征进行分类,以识别相机型号。

            图片

          创新点

                    • 双分支架构:利用RGB图像和高通滤波后的噪声图像的互补性,显著提高了相机型号识别的准确性和鲁棒性。与单分支方法相比,该方法在社交媒体图像数据集上的准确率提升了6.2%,在跨数据集评估中,图像级准确率(ILA)提升了3.6%。

                      鲁棒性提升:通过引入新的评估指标APMVC(平均多数类投票正确率),量化了图像级相机型号估计的鲁棒性,进一步证明了该方法在真实世界应用场景中的有效性。

                      性能提升:在多个数据集上,该方法在图像级准确率(ILA)和补丁级准确率(PLA)上均优于现有的最先进方法,平均ILA提升了1.96%,PLA提升了10.31%。

                      图片

                    论文2:

                    Dual-channel neural network for instance segmentation of synapse

                    用于突触实例分割的双通道神经网络

                    方法

                        • 双通道架构:设计了一个双通道神经网络(DCNN),结合了自顶向下的加权方案和多尺度自底向上的方案,用于准确检测和分割突触囊泡及其在突触前膜中的活性区域。

                          掩码自监督预训练模型:提出了一种基于最新卷积架构的掩码自监督预训练模型,以提高下游分割任务的性能。

                          多尺度损失函数:引入了多尺度损失函数,包括焦点损失、Dice损失和结构相似性(MS-SSIM)损失,以更好地处理不同大小的目标。

                          特征金字塔网络(FPN):使用FPN作为网络的颈部,生成不同大小的特征金字塔,以支持多尺度分割。

                          图片

                        创新点

                                  • 双通道架构:通过分别处理突触囊泡和活性区域,显著提高了分割的准确性和效率。与单分支方法相比,该方法在AP(平均精度)、AP.5(IoU阈值为0.5时的AP)和AP.75(IoU阈值为0.75时的AP)上均取得了更好的性能。

                                    多尺度损失函数:通过结合多尺度损失函数,该方法能够更好地处理不同大小的目标,特别是在处理小目标时,平均精度(AP.5)提升了13.4%。

                                    性能提升:在突触结构实例分割任务中,该方法的mAP(平均精度)达到了0.513,显著优于现有的最先进方法,如SCNet(mAP为0.408)和SOLO(mAP为0.436)。

                                    图片

                                  论文3:

                                  Laser absorption spectroscopy based on dual-convolutional neural network algorithms for multiple trace gases analysis

                                  基于双卷积神经网络算法的激光吸收光谱法用于多种微量气体分析

                                  方法

                                  • 双卷积神经网络(D-CNN):开发了一种基于双卷积神经网络的算法,用于光谱信号去噪和浓度反演。

                                    基线归一化算法:提出了一种基于多峰拟合的基线归一化算法,以简化实验过程。

                                    光谱信号去噪:使用CNN模型对光谱信号进行去噪,提高信噪比(SNR)。

                                    浓度预测:通过CNN模型预测气体浓度,使用模拟光谱数据进行训练和验证。

                                    图片

                                  创新点

                                              • 双卷积神经网络(D-CNN):与传统方法相比,D-CNN去噪算法显著提高了信噪比(SNR),提升了2.37倍。同时,甲烷(CH4)和氧化亚氮(N2O)的浓度相关系数分别从0.9965提高到0.9991和从0.9983提高到0.9994。

                                                性能提升:通过模拟和实验数据验证,该方法在光谱分离和浓度预测方面表现出色,与传统方法(如偏最小二乘法PLS)相比,CNN模型的决定系数(R²)更高,分别为0.9991和0.9994,而PLS方法分别为0.9965和0.9983。

                                                图片


                                              论文4:

                                              PDC–HAR: Human activity recognition via multi-sensor wearable networks using two-channel convolutional neural networks

                                              基于双通道卷积神经网络的多传感器可穿戴网络用于人体活动识别

                                              方法

                                                • 双通道卷积神经网络(DPB-CNN):提出了一种基于双通道卷积神经网络的模型,通过添加SPF(空间金字塔融合)层实现特征级融合。

                                                  主成分分析(PCA):设计了一种基于PCA的特征增强算法,用于分析传感器信号之间的相关性和贡献,并生成加权图像。

                                                  特征融合:基于局部对比度和亮度特征的融合方案,通过金字塔算法实现加权融合,减少特征维度并提取关键信息。

                                                  多传感器数据采集:构建了一个包含惯性传感器(IMU)、曲率传感器(FLEX)和肌电图传感器(EMG)的多传感器网络,用于采集人体活动数据。

                                                  图片

                                                创新点

                                                    • 双通道卷积神经网络(DPB-CNN):与单通道模型相比,该模型能够同时处理和融合异构传感器信号,显著提高了分类性能。在mHealth数据集上,DPB-CNN的准确率达到了97.42%,在MSN数据集上,准确率达到了99.31%。

                                                      特征增强算法:通过PCA生成的加权图像显著提高了特征的区分度,减少了模态间的误分类率。在mHealth数据集上,平均准确率提高了23%,在MSN数据集上,平均准确率提高了4%。

                                                      性能提升:与现有的特征融合方法(如MGAF和CFL)相比,SPF特征融合方法在分类准确率、精确率、召回率和F1分数上均取得了更好的结果,证明了其在特征融合方面的优越性。

                                                      图片

                                                    小编整理了双通道卷积神经网络文代码合集

                                                    需要的同学扫码添加我

                                                    回复“ 双通道卷积神经网络”即可全部领取

                                                    图片

                                                    评论
                                                    添加红包

                                                    请填写红包祝福语或标题

                                                    红包个数最小为10个

                                                    红包金额最低5元

                                                    当前余额3.43前往充值 >
                                                    需支付:10.00
                                                    成就一亿技术人!
                                                    领取后你会自动成为博主和红包主的粉丝 规则
                                                    hope_wisdom
                                                    发出的红包
                                                    实付
                                                    使用余额支付
                                                    点击重新获取
                                                    扫码支付
                                                    钱包余额 0

                                                    抵扣说明:

                                                    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                                                    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                                                    余额充值