2025深度学习发论文&模型涨点之——双通道卷积神经网络
双通道卷积神经网络(Double Channel Convolutional Neural Network,DCNN)是一种特殊的卷积神经网络结构,它通过引入两个独立的卷积通道来处理输入数据,从而提高模型的性能和效率。
-
双通道结构:双通道卷积神经网络由两个独立的卷积层组成,每个卷积层使用不同的卷积核提取特征,生成两个不同的特征图。这两个特征图可以单独进行后续的处理,也可以进行融合。
-
特征提取:两个卷积层分别负责提取图像中的不同特征信息,例如一个通道提取空间信息,另一个通道提取语义信息。这种设计使得网络能够更全面地捕捉图像中的特征。
-
特征融合:在卷积操作后,两个特征图通常会进行融合,形成最终的特征表示。这种融合可以是简单的拼接,也可以是通过双线性池化等更复杂的操作来实现。
小编整理了一些双通道卷积神经网络【论文】合集,以下放出部分,全部论文PDF版皆可领取。
需要的同学扫码添加我
回复“双通道卷积神经网络”即可全部领取
论文精选
论文1:
Dual-branch convolutional neural network for robust camera model identification
用于鲁棒相机型号识别的双分支卷积神经网络
方法
-
双分支架构:提出了一种双分支卷积神经网络(CNN),一个分支直接使用三通道RGB图像,另一个分支使用通过高通滤波得到的噪声图像。
高通滤波:通过高通滤波提取图像的噪声特征,以增强相机型号特定的指纹信息。
特征融合:将RGB图像特征和噪声图像特征通过级联融合,以获取更鲁棒的特征表示。
分类网络:使用两层全连接网络对融合后的特征进行分类,以识别相机型号。
创新点
-
双分支架构:利用RGB图像和高通滤波后的噪声图像的互补性,显著提高了相机型号识别的准确性和鲁棒性。与单分支方法相比,该方法在社交媒体图像数据集上的准确率提升了6.2%,在跨数据集评估中,图像级准确率(ILA)提升了3.6%。
鲁棒性提升:通过引入新的评估指标APMVC(平均多数类投票正确率),量化了图像级相机型号估计的鲁棒性,进一步证明了该方法在真实世界应用场景中的有效性。
性能提升:在多个数据集上,该方法在图像级准确率(ILA)和补丁级准确率(PLA)上均优于现有的最先进方法,平均ILA提升了1.96%,PLA提升了10.31%。
论文2:
Dual-channel neural network for instance segmentation of synapse
用于突触实例分割的双通道神经网络
方法
-
双通道架构:设计了一个双通道神经网络(DCNN),结合了自顶向下的加权方案和多尺度自底向上的方案,用于准确检测和分割突触囊泡及其在突触前膜中的活性区域。
掩码自监督预训练模型:提出了一种基于最新卷积架构的掩码自监督预训练模型,以提高下游分割任务的性能。
多尺度损失函数:引入了多尺度损失函数,包括焦点损失、Dice损失和结构相似性(MS-SSIM)损失,以更好地处理不同大小的目标。
特征金字塔网络(FPN):使用FPN作为网络的颈部,生成不同大小的特征金字塔,以支持多尺度分割。
创新点
-
双通道架构:通过分别处理突触囊泡和活性区域,显著提高了分割的准确性和效率。与单分支方法相比,该方法在AP(平均精度)、AP.5(IoU阈值为0.5时的AP)和AP.75(IoU阈值为0.75时的AP)上均取得了更好的性能。
多尺度损失函数:通过结合多尺度损失函数,该方法能够更好地处理不同大小的目标,特别是在处理小目标时,平均精度(AP.5)提升了13.4%。
性能提升:在突触结构实例分割任务中,该方法的mAP(平均精度)达到了0.513,显著优于现有的最先进方法,如SCNet(mAP为0.408)和SOLO(mAP为0.436)。
论文3:
Laser absorption spectroscopy based on dual-convolutional neural network algorithms for multiple trace gases analysis
基于双卷积神经网络算法的激光吸收光谱法用于多种微量气体分析
方法
-
双卷积神经网络(D-CNN):开发了一种基于双卷积神经网络的算法,用于光谱信号去噪和浓度反演。
基线归一化算法:提出了一种基于多峰拟合的基线归一化算法,以简化实验过程。
光谱信号去噪:使用CNN模型对光谱信号进行去噪,提高信噪比(SNR)。
浓度预测:通过CNN模型预测气体浓度,使用模拟光谱数据进行训练和验证。
创新点
-
双卷积神经网络(D-CNN):与传统方法相比,D-CNN去噪算法显著提高了信噪比(SNR),提升了2.37倍。同时,甲烷(CH4)和氧化亚氮(N2O)的浓度相关系数分别从0.9965提高到0.9991和从0.9983提高到0.9994。
性能提升:通过模拟和实验数据验证,该方法在光谱分离和浓度预测方面表现出色,与传统方法(如偏最小二乘法PLS)相比,CNN模型的决定系数(R²)更高,分别为0.9991和0.9994,而PLS方法分别为0.9965和0.9983。
论文4:
PDC–HAR: Human activity recognition via multi-sensor wearable networks using two-channel convolutional neural networks
基于双通道卷积神经网络的多传感器可穿戴网络用于人体活动识别
方法
-
双通道卷积神经网络(DPB-CNN):提出了一种基于双通道卷积神经网络的模型,通过添加SPF(空间金字塔融合)层实现特征级融合。
主成分分析(PCA):设计了一种基于PCA的特征增强算法,用于分析传感器信号之间的相关性和贡献,并生成加权图像。
特征融合:基于局部对比度和亮度特征的融合方案,通过金字塔算法实现加权融合,减少特征维度并提取关键信息。
多传感器数据采集:构建了一个包含惯性传感器(IMU)、曲率传感器(FLEX)和肌电图传感器(EMG)的多传感器网络,用于采集人体活动数据。
创新点
-
双通道卷积神经网络(DPB-CNN):与单通道模型相比,该模型能够同时处理和融合异构传感器信号,显著提高了分类性能。在mHealth数据集上,DPB-CNN的准确率达到了97.42%,在MSN数据集上,准确率达到了99.31%。
特征增强算法:通过PCA生成的加权图像显著提高了特征的区分度,减少了模态间的误分类率。在mHealth数据集上,平均准确率提高了23%,在MSN数据集上,平均准确率提高了4%。
性能提升:与现有的特征融合方法(如MGAF和CFL)相比,SPF特征融合方法在分类准确率、精确率、召回率和F1分数上均取得了更好的结果,证明了其在特征融合方面的优越性。
小编整理了双通道卷积神经网络论文代码合集
需要的同学扫码添加我
回复“ 双通道卷积神经网络”即可全部领取