机器学习——朴素贝叶斯

一、贝叶斯公式

p ( y ∣ x ) = p ( x ∣ y ) ∗ p ( y ) p ( x ) p(y|x) = \frac{p(x|y) * p(y)}{p(x)} p(yx)=p(x)p(xy)p(y)
其实它是由联合概率公式推导出来的:
P ( Y , X ) = P ( Y ∣ X ) P ( X ) = P ( X ∣ Y ) P ( Y ) P(Y,X) = P(Y|X)P(X) = P(X|Y)P(Y) P(Y,X)=P(YX)P(X)=P(XY)P(Y)
其中P(Y)叫做先验概率,P(Y|X)叫做后验概率。

二、 条件独立假设

在计算 p ( f e a t u r e s ∣ c l a s s ) = p ( f 0 , f 1 , … , f n ∣ c ) p(features|class)=p(f0,f1,…,fn|c) p(featuresclass)=p(f0,f1,,fnc)的概率时,features的维度可能很多,拿三个维度举例:
p ( f 0 , f 1 , f 2 ∣ c ) = p ( f 0 ∣ c ) p ( f 1 ∣ f 0 , c ) p ( f 2 ∣ f 1 , f 0 , c ) p(f0,f1,f2|c)=p(f0|c)p(f1|f0,c)p(f2|f1,f0,c) p(f0,f1,f2∣c)=p(f0∣c)p(f1∣f0,c)p(f2∣f1,f0,c)
在特征特别多的情况下,链式计算时复杂度高,并且在累乘计算时得到的值很容易underflow(数据下溢)。
这时就加了一个假设: 特征之间是相互独立的,这时就得到了
p ( f 0 , f 1 , f 2 ∣ c ) = p ( f 0 ∣ c ) p ( f 1 ∣ c ) p ( f 2 ∣ c ) p(f0,f1,f2|c)=p(f0|c)p(f1|c)p(f2|c) p(f0,f1,f2∣c)=p(f0∣c)p(f1∣c)p(f2∣c)

三、贝叶斯分类器

在实际计算中我们对每个类别计算一个概率 p(ci) ,然后再计算所有特征的条件概率 p(fj|ci) ,那么分类的时候我们就是依据贝叶斯找一个最可能的类别:
p ( c l a s s i ∣ f 0 , f 1 , … , f n ) = p ( c l a s s i ) p ( f 0 , f 1 , … , f n ) Π j n p ( f j ∣ c i ) p(class_i|{f_0, f_1, \ldots, f_n})= \frac{p(class_i)}{p({f_0, f_1, \ldots, f_n})} \Pi^n_j p(f_j|c_i) p(classif0,f1,,fn)=p(f0,f1,,fn)p(classi)Πjnp(fjci)

待完善。。。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值