图正则化(Graph Regularization)是一种在机器学习和数据分析中使用的正则化技术,它主要用于保留数据的局部几何结构

在非负矩阵分解(NMF)和其他子空间学习方法中,图正则化能够帮助算法更好地捕捉数据的内在流形结构,从而提高学习结果的质量。

下面详细介绍图正则化的基本概念、涉及的数学公式,并给出一个具体的例子。

图正则化基本概念

图正则化的核心思想是利用数据点之间的相似性或距离信息构建一个图(Graph),并在这个图上应用正则化项,确保数据的低维表示 在子空间中保持相近数据点之间的相对距离。这通常通过构造一个邻接矩阵来实现,邻接矩阵中的元素表示数据点之间的相似度或距离。

公式

图正则化的非负矩阵分解(GNMF)的目标函数可以表示为:

什么是图正则化?_线性代数

其中,

  • ( X ) 是原始数据矩阵
  • ( U ) 和 ( V ) 分别是基矩阵编码矩阵
  • ( L ) 是图拉普拉斯矩阵
  • 什么是图正则化?_矩阵_02正则化参数
  • 图拉普拉斯矩阵 什么是图正则化?_算法_03,其中 ( D ) 是度矩阵,D 的对角线元素是邻接矩阵 ( W ) 的行和,( W ) 是根据数据点之间的距离或相似度构建的邻接矩阵。
具体例子

假设我们有一组数据点,这些数据点在二维空间中形成一个圆形,我们希望使用非负矩阵分解对其进行降维,同时保留数据的圆周结构

我们可以构建一个图,其中每个数据点是图的一个节点,节点之间的边权重由数据点之间的距离决定

然后,我们应用图正则化非负矩阵分解,其目标函数包含两项:一项是重构误差,另一项是图正则化项确保在低维表示中,原本邻近的数据点依然保持接近。

例如,我们有以下数据矩阵 ( X ):

什么是图正则化?_矩阵_04

通过图正则化NMF,我们试图找到矩阵 ( U ) 和 ( V ),使得 ( UV ) 接近 ( X ),同时满足图正则化条件。

具体步骤包括构建邻接矩阵 ( W ),计算图拉普拉斯矩阵 ( L ),并求解上述目标函数,以得到最佳的 ( U ) 和 ( V )。

在实际操作中,这通常需要使用迭代算法,如梯度下降或交替最小化方法,来优化 ( U ) 和 ( V ) 的值,直至满足收敛条件。在每次迭代中,会更新 ( U ) 和 ( V ),直到目标函数 什么是图正则化?_机器学习_05

在这个过程中,图正则化项 什么是图正则化?_图_06 确保了即使在降维后,数据点在子空间中的相对位置也能够反映出它们在原始空间中的局部流形结构

这样,即使数据被压缩到较低维度,仍能保留重要的几何信息。