题目描述
给定一个长度为 nnn 的序列 aaa,要求支持如下三个操作:
- 给定区间 [l,r][l, r][l,r],将区间内每个数都修改为 xxx。
- 给定区间 [l,r][l, r][l,r],将区间内每个数都加上 xxx。
- 给定区间 [l,r][l, r][l,r],求区间内的最大值。
输入格式
第一行是两个整数,依次表示序列的长度 nnn 和操作的个数 qqq。
第二行有 nnn 个整数,第 iii 个整数表示序列中的第 iii 个数 aia_iai。
接下来 qqq 行,每行表示一个操作。每行首先有一个整数 opopop,表示操作的类型。
- 若 op=1op = 1op=1,则接下来有三个整数 l,r,xl, r, xl,r,x,表示将区间 [l,r][l, r][l,r] 内的每个数都修改为 xxx。
- 若 op=2op = 2op=2,则接下来有三个整数 l,r,xl, r, xl,r,x,表示将区间 [l,r][l, r][l,r] 内的每个数都加上 xxx。
- 若 op=3op = 3op=3,则接下来有两个整数 l,rl, rl,r,表示查询区间 [l,r][l, r][l,r] 内的最大值。
输出格式
对于每个 op=3op = 3op=3 的操作,输出一行一个整数表示答案。
输入输出样例 #1
输入 #1
6 6
1 1 4 5 1 4
1 1 2 6
2 3 4 2
3 1 4
3 2 3
1 1 6 -1
3 1 6
输出 #1
7
6
-1
输入输出样例 #2
输入 #2
4 4
10 4 -3 -7
1 1 3 0
2 3 4 -4
1 2 4 -9
3 1 4
输出 #2
0
说明/提示
数据规模与约定
- 对于 10%10\%10% 的数据,n=q=1n = q = 1n=q=1。
- 对于 40%40\%40% 的数据,n,q≤103n, q \leq 10^3n,q≤103。
- 对于 50%50\%50% 的数据,0≤ai,x≤1040 \leq a_i, x \leq 10^40≤ai,x≤104。
- 对于 60%60\%60% 的数据,op≠1op \neq 1op=1。
- 对于 90%90\%90% 的数据,n,q≤105n, q \leq 10^5n,q≤105。
- 对于 100%100\%100% 的数据,1≤n,q≤1061 \leq n, q \leq 10^61≤n,q≤106,1≤l,r≤n1 \leq l, r \leq n1≤l,r≤n,op∈{1,2,3}op \in \{1, 2, 3\}op∈{1,2,3},∣ai∣,∣x∣≤109|a_i|, |x| \leq 10^9∣ai∣,∣x∣≤109。
提示
请注意大量数据读入对程序效率造成的影响。
solution
线段树两种运算的一种改版,每个节点存储是否有要向下修改的值,和待加的值,push_down 时注意区别有没有改的值。
代码
#include <sstream>
#include "iostream"
#include "cmath"
#include "vector"
#include "algorithm"
using namespace std;
const int N = 1e6 + 5;
int n;
long long b[N];
struct node {
long long Max, add, val;
bool flag;
} a[4 * N];
// 将父节点的 tag 信息向下分摊
void push_down(int rt) {
// 先改、再算加法, 因为乘法影响加法,加法不影响乘法
if (a[rt].flag) {
a[rt * 2].Max = a[rt].val + a[rt].add;
a[rt * 2 + 1].Max = a[rt].val + a[rt].add;
a[rt * 2].val = a[rt].val;
a[rt * 2 + 1].val = a[rt].val;
a[rt * 2].add = a[rt].add;
a[rt * 2 + 1].add = a[rt].add;
a[rt * 2].flag = true;
a[rt * 2 + 1].flag = true;
a[rt].flag = false;
a[rt].val = 0;
a[rt].add = 0;
} else {
a[rt * 2].Max += a[rt].add;
a[rt * 2 + 1].Max += a[rt].add;
a[rt * 2].add += a[rt].add;
a[rt * 2 + 1].add += a[rt].add;
a[rt].add = 0;
}
}
void push_up(int rt) {
a[rt].Max = max(a[rt * 2].Max, a[rt * 2 + 1].Max);
}
void build(int rt, int l, int r) {
a[rt].add = 0, a[rt].val = 0, a[rt].flag = false;
if (l == r) {
a[rt].Max = b[l];
return;
}
int m = l + r >> 1;
build(rt * 2, l, m);
build(rt * 2 + 1, m + 1, r);
push_up(rt);
}
/*
* f[x] = flag ? val + add : x + add
*
* f[x] = 1 ? val + 0 : 0 + 0
*
*
*/
void update_change(int rt, int l, int r, int L, int R, int val) { // l, r 是 rt管理的区间, L R是修改的区间, k 是修改的量
// 整个区间都要改变
if (L <= l && r <= R) {
a[rt].Max = val;
a[rt].add = 0;
a[rt].val = val;
a[rt].flag = true;
return;
}
push_down(rt); // tag 向下传递
int m = l + r >> 1;
if (L <= m) update_change(rt * 2, l, m, L, R, val);
if (R > m) update_change(rt * 2 + 1, m + 1, r, L, R, val);
push_up(rt); // sum 向上汇总
}
void update_add(int rt, int l, int r, int L, int R, int add) { // l, r 是 rt管理的区间, L R是修改的区间, k 是修改的量
// 整个区间都要改变
if (L <= l && r <= R) {
a[rt].Max += add;
a[rt].add += add;
return;
}
push_down(rt); // tag 向下传递
int m = l + r >> 1;
if (L <= m) update_add(rt * 2, l, m, L, R, add);
if (R > m) update_add(rt * 2 + 1, m + 1, r, L, R, add);
push_up(rt); // sum 向上汇总
}
long long query(int rt, int l, int r, int L, int R) {
// 整个区间都要
if (L <= l && r <= R) {
return a[rt].Max;
}
push_down(rt);
int m = l + r >> 1;
long long s = -1e18;
if (L <= m) s = max(s, query(rt * 2, l, m, L, R));
if (R > m) s = max(s, query(rt * 2 + 1, m + 1, r, L, R));
return s;
}
int main() {
int m;
cin >> n >> m;
for (int i = 1; i <= n; i++) scanf("%lld", &b[i]);//cin >> b[i];
build(1, 1, n);
for (int i = 0; i < m; i++) {
int op, l, r, k;
scanf("%d%d%d", &op, &l, &r);
//cin >> op >> l >> r;
if (op == 1) {
//cin >> k;
scanf("%d", &k);
update_change(1, 1, n, l, r, k);
} else if (op == 2) {
//cin >> k;
scanf("%d", &k);
update_add(1, 1, n, l, r, k);
} else {
printf("%lld\n", query(1, 1, n, l, r));
//cout << query(1, 1, n, l, r) << endl;
}
}
}