洛谷 P1253 扶苏的问题-普及+/提高

题目描述

给定一个长度为 nnn 的序列 aaa,要求支持如下三个操作:

  1. 给定区间 [l,r][l, r][l,r],将区间内每个数都修改为 xxx
  2. 给定区间 [l,r][l, r][l,r],将区间内每个数都加上 xxx
  3. 给定区间 [l,r][l, r][l,r],求区间内的最大值。

输入格式

第一行是两个整数,依次表示序列的长度 nnn 和操作的个数 qqq
第二行有 nnn 个整数,第 iii 个整数表示序列中的第 iii 个数 aia_iai
接下来 qqq 行,每行表示一个操作。每行首先有一个整数 opopop,表示操作的类型。

  • op=1op = 1op=1,则接下来有三个整数 l,r,xl, r, xl,r,x,表示将区间 [l,r][l, r][l,r] 内的每个数都修改为 xxx
  • op=2op = 2op=2,则接下来有三个整数 l,r,xl, r, xl,r,x,表示将区间 [l,r][l, r][l,r] 内的每个数都加上 xxx
  • op=3op = 3op=3,则接下来有两个整数 l,rl, rl,r,表示查询区间 [l,r][l, r][l,r] 内的最大值。

输出格式

对于每个 op=3op = 3op=3 的操作,输出一行一个整数表示答案。

输入输出样例 #1

输入 #1

6 6
1 1 4 5 1 4
1 1 2 6
2 3 4 2
3 1 4
3 2 3
1 1 6 -1
3 1 6

输出 #1

7
6
-1

输入输出样例 #2

输入 #2

4 4
10 4 -3 -7
1 1 3 0
2 3 4 -4
1 2 4 -9
3 1 4

输出 #2

0

说明/提示

数据规模与约定

  • 对于 10%10\%10% 的数据,n=q=1n = q = 1n=q=1
  • 对于 40%40\%40% 的数据,n,q≤103n, q \leq 10^3n,q103
  • 对于 50%50\%50% 的数据,0≤ai,x≤1040 \leq a_i, x \leq 10^40ai,x104
  • 对于 60%60\%60% 的数据,op≠1op \neq 1op=1
  • 对于 90%90\%90% 的数据,n,q≤105n, q \leq 10^5n,q105
  • 对于 100%100\%100% 的数据,1≤n,q≤1061 \leq n, q \leq 10^61n,q1061≤l,r≤n1 \leq l, r \leq n1l,rnop∈{1,2,3}op \in \{1, 2, 3\}op{1,2,3}∣ai∣,∣x∣≤109|a_i|, |x| \leq 10^9ai,x109

提示

请注意大量数据读入对程序效率造成的影响。

solution

线段树两种运算的一种改版,每个节点存储是否有要向下修改的值,和待加的值,push_down 时注意区别有没有改的值。

代码

#include <sstream>
#include "iostream"
#include "cmath"
#include "vector"
#include "algorithm"

using namespace std;
const int N = 1e6 + 5;

int n;
long long b[N];

struct node {
    long long Max, add, val;
    bool flag;
} a[4 * N];

// 将父节点的 tag 信息向下分摊
void push_down(int rt) {
    // 先改、再算加法, 因为乘法影响加法,加法不影响乘法
    if (a[rt].flag) {
        a[rt * 2].Max = a[rt].val + a[rt].add;
        a[rt * 2 + 1].Max = a[rt].val + a[rt].add;

        a[rt * 2].val = a[rt].val;
        a[rt * 2 + 1].val = a[rt].val;

        a[rt * 2].add = a[rt].add;
        a[rt * 2 + 1].add = a[rt].add;

        a[rt * 2].flag = true;
        a[rt * 2 + 1].flag = true;

        a[rt].flag = false;
        a[rt].val = 0;
        a[rt].add = 0;
    } else {
        a[rt * 2].Max += a[rt].add;
        a[rt * 2 + 1].Max += a[rt].add;

        a[rt * 2].add += a[rt].add;
        a[rt * 2 + 1].add += a[rt].add;

        a[rt].add = 0;
    }
}

void push_up(int rt) {
    a[rt].Max = max(a[rt * 2].Max, a[rt * 2 + 1].Max);
}

void build(int rt, int l, int r) {
    a[rt].add = 0, a[rt].val = 0, a[rt].flag = false;
    if (l == r) {
        a[rt].Max = b[l];
        return;
    }

    int m = l + r >> 1;
    build(rt * 2, l, m);
    build(rt * 2 + 1, m + 1, r);
    push_up(rt);
}

/*
 * f[x] = flag ? val + add : x + add
 *
 * f[x] = 1 ? val + 0 : 0 + 0
 *
 *
 */

void update_change(int rt, int l, int r, int L, int R, int val) { // l, r 是 rt管理的区间, L R是修改的区间, k 是修改的量
    // 整个区间都要改变
    if (L <= l && r <= R) {
        a[rt].Max = val;
        a[rt].add = 0;
        a[rt].val = val;
        a[rt].flag = true;
        return;
    }

    push_down(rt); // tag 向下传递
    int m = l + r >> 1;
    if (L <= m) update_change(rt * 2, l, m, L, R, val);
    if (R > m) update_change(rt * 2 + 1, m + 1, r, L, R, val);
    push_up(rt); // sum 向上汇总
}

void update_add(int rt, int l, int r, int L, int R, int add) { // l, r 是 rt管理的区间, L R是修改的区间, k 是修改的量
    // 整个区间都要改变
    if (L <= l && r <= R) {
        a[rt].Max += add;
        a[rt].add += add;
        return;
    }

    push_down(rt); // tag 向下传递
    int m = l + r >> 1;
    if (L <= m) update_add(rt * 2, l, m, L, R, add);
    if (R > m) update_add(rt * 2 + 1, m + 1, r, L, R, add);
    push_up(rt); // sum 向上汇总
}

long long query(int rt, int l, int r, int L, int R) {
    // 整个区间都要
    if (L <= l && r <= R) {
        return a[rt].Max;
    }

    push_down(rt);
    int m = l + r >> 1;
    long long s = -1e18;
    if (L <= m) s = max(s, query(rt * 2, l, m, L, R));
    if (R > m) s = max(s, query(rt * 2 + 1, m + 1, r, L, R));
    return s;
}

int main() {
    int m;

    cin >> n >> m;
    for (int i = 1; i <= n; i++)  scanf("%lld", &b[i]);//cin >> b[i];

    build(1, 1, n);
    for (int i = 0; i < m; i++) {
        int op, l, r, k;
        scanf("%d%d%d", &op, &l, &r);
        //cin >> op >> l >> r;
        if (op == 1) {
            //cin >> k;
            scanf("%d", &k);
            update_change(1, 1, n, l, r, k);
        } else if (op == 2) {
            //cin >> k;
            scanf("%d", &k);
            update_add(1, 1, n, l, r, k);
        } else {
            printf("%lld\n", query(1, 1, n, l, r));
            //cout << query(1, 1, n, l, r) << endl;
        }
    }
}

结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智趣代码实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值