Transformer通俗笔记:从Word2Vec、Seq2Seq逐步理解到GPT、BERT

本文详细阐述了NLP领域的几个关键模型,包括Word2Vec的词向量生成,Seq2Seq的序列转换,Transformer的自注意力创新,以及GPT和BERT的预训练技术。这些模型利用深度学习改变了自然语言处理的方式,对AI发展产生深远影响。
摘要由CSDN通过智能技术生成

Transformer通俗笔记:从Word2Vec、Seq2Seq逐步理解到GPT、BERT

引言

自然语言处理(NLP)是人工智能领域的一个重要分支,它涉及计算机理解和处理人类语言的能力。近年来,随着深度学习技术的发展,NLP领域出现了许多突破性的模型和架构,其中包括Word2Vec、Seq2Seq、Transformer、GPT和BERT。本文将详细介绍这些模型的基本原理,并通过Python代码和数学公式加深理解。

目录

  1. Word2Vec:词向量的生成与应用
  2. Seq2Seq:序列到序列的建模与转换
  3. Transformer:自注意力机制的革新
  4. GPT:生成式预训练模型的语言生成能力
  5. BERT:双向编码器的自然语言理解
  6. 总结
  7. 参考文献

1. Word2Vec:词向量的生成与应用

1.1 词向量的意义

词向量(Word Embedding)是将自然语言中的词汇映射到高维向量空间中的一种技术。词向量能够捕捉词汇之间的语义和语法关系,为后续的NLP任务提供有力支持。

1.2 Word2Vec模型

Word2Vec是一组用于生成词向量的浅层神经网络模型,包括CBOW(Continuous Bag of Words)和Skip-Gram两种架构。CBOW通过上下文词预测目标词,而Skip-Gram则通过目标词预测上下文词。

1.3 Python实现
# 导入Word2Vec模型
from gensim.models import Word2Vec

# 示例语料
sentences = [["我", "喜欢", "吃", "苹果"], ["苹果", "是", "一种", "水果"]]

# 训练Word2Vec模型
model = Word2Vec(sentences, vector_size=100, window=5, min_count=1, workers=4)

# 获取词向量
vector = model.wv["苹果"]

# 输出词向量
print("苹果的词向量:", vector)

2. Seq2Seq:序列到序列的建模与转换

2.1 序列到序列任务

序列到序列(Seq2Seq)模型用于处理输入和输出均为序列的任务,例如机器翻译、语音识别和文本摘要。

2.2 Seq2Seq模型架构

Seq2Seq模型通常包括编码器(Encoder)和解码器(Decoder)两部分。编码器负责将输入序列编码

为固定大小的上下文向量,解码器则根据上下文向量生成输出序列。

2.3 Python实现
# 导入Seq2Seq模型相关库
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense

# 定义模型参数
input_dim = 100  # 输入维度
output_dim = 100  # 输出维度
latent_dim = 256  # 隐藏层维度

# 编码器
encoder_inputs = Input(shape=(None, input_dim))
encoder_lstm = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder_lstm(encoder_inputs)
encoder_states = [state_h, state_c]

# 解码器
decoder_inputs = Input(shape=(None, output_dim))
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(output_dim, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)

# 构建模型
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

# 编译模型
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

# 模型训练与预测的代码省略

3. Transformer:自注意力机制的革新

3.1 自注意力机制

自注意力(Self-Attention)机制是Transformer模型的核心,它允许模型在处理序列数据时考虑到每个元素与其他元素之间的关系。

3.2 Transformer模型架构

Transformer模型由编码器和解码器组成,每个编码器和解码器由多层自注意力和前馈神经网络组成。Transformer模型的优势在于并行计算能力强,适合处理长序列数据。

3.3 数学公式

自注意力机制的计算公式如下:
Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V
其中,(Q)、(K)、(V)分别表示查询矩阵、键矩阵和值矩阵,(d_k)表示键向量的维度。

4. GPT:生成式预训练模型的语言生成能力

4.1 语言模型与生成

GPT(Generative Pre-trained Transformer)是一种基于Transformer的语言模型,能够生成连贯且符合上下文的文本。

4.2 GPT模型特点

GPT模型采用单向自注意力机制,通过大量无标签文本进行预训练,再针对特定任务进行微调。GPT-3是GPT模型的最新版本,具有强大的生成能力和泛化性能。

5. BERT:双向编码器的自然语言理解

5.1 BERT模型简介

BERT(Bidirectional Encoder Representations from Transformers)是Google提出的一种基于Transformer的预训练模型,能够捕捉词汇在上下文中的双向关系。

5.2 BERT的训练任务

BERT模型通过掩码语言模型(Masked Language Model, MLM)和下一句预测(Next Sentence Prediction, NSP)两种任务进行预训练。其中,MLM任务通过随机掩盖一部分词汇,让模型预测被掩盖的词汇;NSP任务则让模型判断两个句子是否连贯。

5.3 BERT的应用

BERT模型在预训练后可以进行微调,适用于各种NLP任务,包括命名实体识别、情感分析、问答系统等。

6. 总结

本文详细介绍了Word2Vec、Seq2Seq、Transformer、GPT和BERT这几种重要的NLP模型及其原理,并通过Python代码和数学公式进行了解释。这些模型在自然语言处理领域具有广泛的应用,并为人工智能的发展做出了重要贡献。

7. 参考文献

  1. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

  2. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27, 3104-3112.

  3. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30, 5998-6008.

  4. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

  5. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.

  6. CSDN博客文章

  7. Pattern文章

  8. 微博

  9. 博客园文章

  10. IT技术文章

  11. TopHub文章

  12. FortuneBus博客

  13. Qfamqsi文章

  14. JHelp文章

  15. BDPT文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值