目录
一、前言
(1)版本匹配
参考资料:TensorFlow依赖于特定版本的CUDA和cuDNN库
说明:CUDA10.0,cuDNN不仅可以是7.4,还可以是其他版本,详见Nvidia官网。
(2)我的选择(仅供参考)
①CUDA10.0.130
②cuDNN7.6.1
(3)已经装好了nvidia驱动。
由于安装CUDA10.0.130,要求驱动版本>=410.48 (上图来源)
解释:为啥CUDA Version是11.2呢?
答:10.0.130是CUDA Toolkit的版本,11.2是CUDA Driver API的版本。安装nvidia驱动的时候,就安装了CUDA Driver API。
二、安装CUDA10.0.130
0.说明:和安装过CUDA8.0的方法一样,不再赘述。
1.配置cuda相关环境变量的补充说明
在/usr/local目录下,有多个cuda相关的目录,如上图红框所示,
cuda
已经软链接到/usr/local/cuda-10.0
了,所以配置cuda相关环境变量方法不变。
2.测试CUDA10.0是否安装成功(显示如下则成功了)
先要
sudo make
三、安装cuDNN7.6.1
1.下载
放入ubuntu18.04中
2.解压
(1)tar -xvf cudnn-10.0-linux-x64-v7.6.1.34.tgz
(2)处理
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
3. 处理另外3个文件
sudo dpkg -i libcudnn7_7.6.1.34-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.6.1.34-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-doc_7.6.1.34-1+cuda10.0_amd64.deb
4.验证
cp -r /usr/src/cudnn_samples_v7/ ./
cd cudnn_samples_v7/mnistCUDNN/
make clean && make
./mnistCUDNN
至此,安装成功!
参考资料:检测CUDNN是否成功安装
四、查看版本
1.查看CUDA版本
cat /usr/local/cuda/version.txt
下载的确实是CUDA10.0.130
2.查看cuDNN版本
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
下载的确实是cuDNN7.6.1