YOLOv5使用amct量化过程学习(未完自用)

本文介绍了BN融合在深度学习模型中的作用,包括标准化处理和计算复杂度的影响。同时,详细讲解了量化技术,特别是昇腾模型压缩工具如何优化BN层,以及模型的保存与加载方法。最后提到了CUDA环境配置和相关术语的学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BN融合

BN融合是指在深度学习模型训练过程中的一种常用技术,它可以帮助模型更快地收敛并提高模型的准确性。BN层通常被添加在卷积层或全连接层之后,对每一个batch的输入数据进行标准化处理,从而使模型训练时更加稳定。

同时,BN层也会引入一些浮点运算,增加模型的计算复杂度。因此,在对模型进行量化压缩时,昇腾模型压缩工具提供了一种优化方法,即BN融合。BN融合指的是将BN层与卷积层或全连接层合并为一个操作,从而在保持模型准确率的同时,减少对模型计算量和存储资源的需求,提高昇腾AI处理器的性能。

量化

量化是指对模型的权重(weight)和数据(activation)进行低比特处理,让最终生成的网络模型更加轻量化,从而达到节省网络模型存储空间、降低传输时延、提高计算效率,达到性能提升与优化的目标。

昇腾模型压缩工具将量化和模型转换分开,实现对模型中可量化层的独立量化,并将量化后的模型存为air模型。量化后的模型可以部署在昇腾AI处理器上运行,达到提升推理性能的目的。

保存与加载模型

模型保存

方式一

只存储模型中的参数,该方法速度快,占用空间少(官方推荐使用)

model = VGGNet()
torch.save(model.state_dict(), PATH)
方式二

存储整个模型

model = VGGNet()
torch.save(model, PATH)
模型加载

方式一

对应第一种保存方式,首先构架模型架

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值