NLP与对抗训练

对抗训练在NLP领域的应用主要包括对抗样本和最小最大优化。Szegedy等人首次引入对抗样本,Goodfellow等人提出梯度攻击方法,Miyato等人通过虚拟对抗训练在文本分类任务中取得突破。对抗训练的难点在于NLP任务的复杂性和离散输入。Chen Zhu等人提出的FreeLB方法在预训练模型如BERT上提高了性能,而Linyang Li的改进则增加了扰动的灵活性。
摘要由CSDN通过智能技术生成

对抗训练(Adversarial Training)简介

大致可以分为下面两种类型:

  1. Injecting adversarial examples(加入对抗样本)
  2. min-max optimization.(最小最大优化)

部分内容参照博客:
https://nlpblog.cl.uni-heidelberg.de/index.php/2019/09/20/adversarial-training/#identifier_22_286

1 Adversarial Examples(对抗样本)

Szegedy et al. (2014)1首先引入了对抗样本的概念,通过对图像添加一些扰动,这些扰动对于人眼是不可察觉的imperceptible,使得神经网络作出错误的判断。

随后Goodfellow et al. (2015)2提出了一个快速生成对抗样本的方法,直接朝着损失函数对于输入梯度的方向移动,而不是搜索给定数据点的所有邻居。

随后Miyato et al. (2016)3提出了Virtual Adversarial Training的方法。

为什么难以应用到NLP任务中?

两个主要的原因,首先对于分类任务而言,模型出错是比较直观的可解释的,但是对于一些其他的任务,则需要更加复杂的评价准则,例如序列标注和语言生成;其次NLP模型输入通常是单词组成的,所以自然的形成一个离散空间,很难知道怎么对输入数据添加对抗扰动。

基于一个假设,即单词经过嵌入后会映射到一个连续的空间,Miyato et al. (2017)4通过对嵌入后的信息做对抗扰动,对文本做对抗训练。在多个文本分类任务中取得了突破,并且学到了高质量的词嵌入表示。

2 Adversarial Game(Min-Max Optimization)

引入一个不同的训练方法,对抗训练,这里的对抗指的是模型不同的部分追求相反的目标,用到了博弈论(Game Theory)的一点概念。这个方法最先由Goodfellow et al. (2014)5 (GAN)引入,模型由两部分组成,一部分试图生成数据分布(生成器),另一部分(辨别器)区分真实数据和生成的数据。双方都使用辨别器的准则做训练信号,直至达到一个饱和态,这叫做min-max优化。

应用到文本中的对抗训练

在ICLR2020会议,Chen Zhu et al. (2020) 6 提出了FreeLB面向自然语言处理的对抗训练方法,基于以往训练方法的改进,在添加扰动然后训练完K步之后,再做参数的反向传播。训练目标可以用下面公式表示:
min ⁡ θ E ( Z , y ) ∼ D [ 1 K ∑ t = 0 K − 1 max ⁡ δ t ∈ I t L ( f θ ( X + δ t ) , y ) ] \min_{\theta}\mathbb{E}_{(Z, y)\sim D} \left[\frac{1}{K}\sum_{t=0}^{K-1}\max_{\delta_t \in \mathcal{I}_t}L(f_{\theta}(X + \delta_t), y) \right] θminE(Z,y)D[K1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值