idea:城市功能区的发掘

本文试图使用POI数据与GPS轨迹数据,协同进行城市功能区的发掘。基本思路如下:
在这里插入图片描述

1)Methods

1.1 城市交通小区的提取

按照交通小区的概念,其实出租车轨迹数据提取的是最可靠的。因为没有GPS数据的地区说明是一个“内部区域”,也就是可以看做一个功能整体。
而路网数据会包含太多道路细节,有些地区可能划分太细。

1.2 功能分区

1.2.1 POI核密度分析

首先POI点投影、合并、核密度分析(输出像元20m)、各类核密度归一化
(问题:归一化时是不是要考虑不同的权重,因为住宅区的核密度应该起到主要作用?还是让这一种原则在选择样本时考虑?)
最后波段合成、ISO聚类。
做了一个小范围实验,效果如下:
在这里插入图片描述
个人感觉比较有代表性的地方在于春熙路商业区,下面是与路网叠加分析的结果:(路网数据:https://download.geofabrik.de/)
在这里插入图片描述
此区域构成复杂,从左向右分别为办公区、娱乐区、住宅区。可以看出聚类结果可以较好地区分开三个区域。

1.2.2 出租车数据的加入

为了提高精度,想要结合poi的核密度影像与出租车影像。
具体为一天16个小时的出租车上车人数,转换为影像的格式。
所以一个问题就来了,出租车影像的格网大小选为多大呢?
而且发现成都市taxi数据有一个整体偏移,如下图:
在这里插入图片描述
通过选择5个左右的控制点,对所有的出租车OD点做了矫正,如下图:
在这里插入图片描述

所以出租车轨迹数据并不适合于在格网尺度上分析、聚类,还是应该按照“交通小区”统计,然后再重采样到和POI核密度图一样的格网,之后波段合成,再一起聚类。
刘老师的文章表明,只考虑每个位置(500m格网)一天内24h的总流出、总流入(注意,不是总上车、总下车,但我感觉就500m这么小的尺度来说,上车=流出,下车=流入,到时候要做一些实验),两个属性,也可以比较有效地聚类,如图:
在这里插入图片描述
因此,简化一下问题,那就是借助出租车数据添加24个波段信息:每个位置一天内的总上车、总下车。由于成都市出租车数据只有一天16小时的数据,于是我要添加的波段数为32个。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值