SVM系列(一)geometric margin 的推导问题

最近一段时间一直在看Andrew Ng的机器学习课程,看到SVM中的geometric margin 的推导过程的时候比较迷茫,下面是Ng的原话:

The decision boundary corresponding to ( ω , b ) \left ( \omega ,b \right ) (ω,b) is shown, along with the vector $\omega $. Note that $\omega $ is orthogonal (at 9 0 ∘ 90^{\circ} 90 ) to the separating hyperplane. (You should convince yourself that this must be the case.)

他说这个$\omega $一定是垂直于超平面的,我之前想了好久,到最后终于想明白了。

下面是他讲义中的原图:
Andrew Ng 机器学习讲义3

有如下公式,
ω = ( θ 1 , θ 2 ) T , b = θ 0 \omega =\left ( \theta _{1} , \theta _{2}\right )^{T} ,b=\theta _{0} ω=(θ1,θ2)Tb=θ0那么超平面( ω T x + b = 0 \omega ^{T}x+b=0 ωTx+b=0)变为 θ 1 x 1 + θ 2 x 2 + θ 0 = 0 \theta _{1}x_{1}+\theta _{2}x_{2}+\theta _{0}=0 θ1x1+θ2x2+θ0=0做一下变形就成为了如下公式: x 2 = − θ 1 θ 2 x 1 − θ 0 θ 2 x_{2}=-\frac{\theta _{1}}{\theta _{2}}x_{1}-\frac{\theta _{0}}{\theta _{2}} x2=θ2θ1x1θ2θ0而$\omega $ 的斜率为 θ 2 θ 1 \frac{\theta _{2}}{\theta _{1}} θ1θ2, 因而$\omega 和 超 平 面 的 斜 率 相 乘 为 − 1 , 即 和超平面的斜率相乘为-1, 即 1,\omega $ 和超平面垂直了。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值