机器学习——SVM(4 Soft-Margin SVM)

Soft-Margin 的含义

所谓的Hard-Margin,就是指所有的资料都要完全分开,即separable,这是SVM产生过拟合的原因之一(还有一个原因就是过于复杂的转换 Φ \Phi Φ)。
所以引入Soft-Margin, 即不必让所有的资料都完全分开,让SVM容许一部分的错误分类点的存在,从而在一定程度上减少过拟合,即要在large margin 和错误分类点容忍度(noise tolerance)之间做一个取舍,以一个参数来衡量。

选择什么参数来衡量? 以下由两种方式:
第一种方式:衡量错误分类点的个数
min ⁡ b , w 1 2 w T w + C ⋅ ∑ n = 1 N [ [ y n ≠ s i g n ( w T z n + b ) ] ] s . t .        y n ( w T z n + b ) ≥ 1    f o r    c o r r e c t    n            y n ( w T z n + b ) ≥ − ∞    f o r    i n c o r r e c t    n \begin{array}{l} \mathop {\min }\limits_{b,w} \frac{1}{2}{w^T}w + C \cdot \sum\limits_{n = 1}^N {\left[\kern-0.15em\left[ {{y_n} \ne sign({w^T}{z_n} + b)} \right]\kern-0.15em\right]} \\ \\ s.t.\;\;\;{y_n}({w^T}{z_n} + b) \ge 1{\kern 1pt} {\kern 1pt} \;for\;correct\;n\\ \\ \;\;\;\;\;{y_n}({w^T}{z_n} + b) \ge - \infty {\kern 1pt} \;for\;incorrect\;n \end{array} b,wmin21wTw+Cn=1N[[yn̸=sign(wTzn+b)]]s.t.yn(wTzn+b)1forcorrectnyn(wTzn+b)forincorrectn

C的含义trade-off of large margin & noise tolerance

对于这种方式有两个不足之处,

  • [ [ ] ] \left[\kern-0.15em\left[ {} \right]\kern-0.15em\right] [[]]是非线性函数,无法使用QP来求解。
  • 无法区分noise点犯错误程度的大小。

第二种方式:衡量错误分类点的犯错误程度
在这里插入图片描述

min ⁡ b , w , ξ 1 2 w T w + C ⋅ ∑ n = 1 N ξ n s . t .        y n ( w T z n + b ) ≥ 1 − ξ n               ξ n ≥ 0            \begin{array}{l} \mathop {\min }\limits_{b,w,\xi } \frac{1}{2}{w^T}w + C \cdot \sum\limits_{n = 1}^N {{\xi _n}} \\ \\ s.t.\;\;\;{y_n}({w^T}{z_n} + b) \ge 1 - {\kern 1pt} {\kern 1pt} {\xi _n}\;\\ \\ \;\;\;\;\;{\xi _n} \ge 0\\ \\ \;\;\;\;\; \end{array} b,w,ξmin21wTw+Cn=1Nξns.t.yn(wTzn+b)1ξnξn0

C的含义:trade-off of large margin & margin violation

该问题可以用QP来解,即有 d ~ + 1 + N \tilde d + 1 + N d~+1+N个变量,2N个约束。

综上,一般采用第二种方式。

对偶形式的Soft-Margin SVM

构造拉格朗日方程如下,
L ( w , b , ξ , α , β ) = 1 2 w T w + C ⋅ ∑ n = 1 N ξ n + ∑ n = 1 N β n ( − ξ n )                              + ∑ n = 1 N α n ( 1 − ξ n − y n ( w T z n + b ) ) \begin{array}{l} L(w,b,\xi ,\alpha ,\beta ) = \frac{1}{2}{w^T}w + C \cdot \sum\limits_{n = 1}^N {{\xi _n}} + \sum\limits_{n = 1}^N {{\beta _n}( - {\xi _n})} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; + \sum\limits_{n = 1}^N {{\alpha _n}(1 - {\xi _n} - {y_n}({w^{\rm{T}}}{z_n} + b))} \end{array} L(w,b,ξ,α,β)=21wTw+Cn=1Nξn+n=1Nβn(ξn)+n=1Nαn(1ξnyn(wTzn+b))
所对应的dual形式描述如下,
max ⁡ α n ≥ 0 , β n ≥ 0 ( min ⁡ b , w , ξ      1 2 w T w + C ⋅ ∑ n = 1 N ξ n + ∑ n = 1 N β n ( − ξ n )                              + ∑ n = 1 N α n ( 1 − ξ n − y n ( w T z n + b ) ) ) \begin{array}{l} \mathop {\max }\limits_{{\alpha _n} \ge 0,{\beta _n} \ge 0} (\mathop {\min }\limits_{b,w,\xi } \;\;\frac{1}{2}{w^T}w + C \cdot \sum\limits_{n = 1}^N {{\xi _n}} + \sum\limits_{n = 1}^N {{\beta _n}( - {\xi _n})} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; + \sum\limits_{n = 1}^N {{\alpha _n}(1 - {\xi _n} - {y_n}({w^{\rm{T}}}{z_n} + b))} ) \end{array} αn0,βn0max(b,w,ξmin21wTw+Cn=1Nξn+n=1Nβn(ξn)+n=1Nαn(1ξnyn(wTzn+b)))

下面是一系列的求解,

∂ L ∂ ξ n = 0 = C − α n − β n ⇒ β n = C − α n 0 ≤ α n ≤ C ∂ L ∂ b = 0 = ∑ n = 1 N α n y n ∂ L ∂ w i = 0 = w − ∑ n = 1 N α n y n z n ⇒ w = ∑ n = 1 N α n y n z n \begin{array}{l} \frac{{\partial L}}{{\partial {\xi _n}}} = 0 = C - {\alpha _n} - {\beta _n} \Rightarrow \begin{array}{} {{\beta _n} = C - {\alpha _n}}\\ {0 \le {\alpha _n} \le C} \end{array}\\ \frac{{\partial L}}{{\partial b}} = 0 = \sum\limits_{n = 1}^N {{\alpha _n}{y_n}} \\ \frac{{\partial L}}{{\partial {w_i}}} = 0 = w - \sum\limits_{n = 1}^N {{\alpha _n}{y_n}{z_n}} \Rightarrow w = \sum\limits_{n = 1}^N {{\alpha _n}{y_n}{z_n}} \end{array} ξnL=0=Cαnβnβn=Cαn0αnCbL=0=n=1NαnynwiL=0=wn=1Nαnynznw=n=1Nαnynzn

标准的Soft-Margin SVM Dual形式为,

s t a n d a r d s o f t − m a r g i n S V M d u a l min ⁡ α 1 2 ∑ n = 1 N ∑ m = 1 N α n α m y n y m z n T z m − ∑ n = 1 N α n s . t . ∑ n = 1 N y n α n = 0 ; 0 ≤ α n ≤ C , f o r n = 1 , 2 , ⋯   , N i m p l i c i t y      w = ∑ n = 1 N α n y n z n                      β n = C − α n \begin{array}{l} {\rm{standard soft - margin SVM dual}}\\ \mathop {\min }\limits_\alpha {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{1}{2}\sum\limits_{n = 1}^N {\sum\limits_{m = 1}^N {{\alpha _n}} } {\alpha _m}{y_n}{y_m}z_n^T{z_m} - \sum\limits_{n = 1}^N {{\alpha _n}} \\ s.t.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{n = 1}^N {{y_n}} {\alpha _n} = 0;\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0 \le {\alpha _n} \le C,{\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} n = 1,2, \cdots ,N\\ {\rm{implicity}}\;\;{\rm{w = }}\sum\limits_{n = 1}^N {{\alpha _n}{y_n}{z_n}} \\ \;\;\;\;\;\;\;\;\;\;{\beta _n} = C - {\alpha _n} \end{array} standardsoftmarginSVMdualαmin21n=1Nm=1NαnαmynymznTzmn=1Nαns.t.n=1Nynαn=0;0αnC,forn=1,2,,Nimplicityw=n=1Nαnynznβn=Cαn

上述形式类似于hard-margin SVM dual,其实与hard-margin相比,只是在 α n {\alpha _n} αn处多了一个上界C而已。

显而易见,上述形式的SVM可用QP来求解,其共有N个变量,2N+1条约束。

类似的,Kernel也可以用在soft-margin SVM里,此时,参数为,
α ← Q P ( Q D , p , A , c ) w ← ∑ n = 1 N α n y n z n \begin{array}{l} \alpha \leftarrow QP({Q_D},p,A,c)\\ w \leftarrow \sum\limits_{n = 1}^N {{\alpha _n}{y_n}{z_n}} \end{array} αQP(QD,p,A,c)wn=1Nαnynzn

类似于hard-margin,通过SV求解b,有,
S V ( α s > 0 ) ⇒ b = y s − y s ξ s − w T z s \begin{array}{l} SV({\alpha _s} > 0)\\ \Rightarrow b = {y_s} - {y_s}{\xi _s} - {w^T}{z_s} \end{array} SV(αs>0)b=ysysξswTzs

上式在计算b的时候,有一项 y s ξ s {y_s}{\xi _s} ysξs,其中的 ξ s {\xi _s} ξs是在求出b之后才能得到的,所以要想办法去掉该项,这里引入free的概念,即,
f r e e ( α s &lt; C ) ⇒ ξ s = 0 \begin{array}{l} free({\alpha _s} &lt; C)\\ \Rightarrow {\xi _s} = 0 \end{array} free(αs<C)ξs=0

所以,在soft-margin SVM里,b是通过 f r e e &ThickSpace; S V ( x s , y s ) free\;SV({x_s},{y_s}) freeSV(xs,ys)来求解的,即,
b = y s − ∑ S V α n y n K ( x n , x s ) b = {y_s} - \sum\limits_{SV} {{\alpha _n}{y_n}K({x_n},{x_s})} b=ysSVαnynK(xn,xs)

当然,也可能存在没有free SV的情况,那这时b只能通过一系列的不等式来限制,此时b的值有很多个,只要满足KKT条件就行。但绝大多数的情形,都是存在free SV的。

参数选择例子,
在这里插入图片描述

α n {\alpha _n} αn的含义,
在这里插入图片描述

对于SV( α n &gt; 0 {\alpha _{\rm{n}}} &gt; 0 αn>0),分为两种,
1.Free SV(正方形表示): 0 &lt; α n &lt; C , ξ n = 0 0 &lt; {\alpha _n} &lt; C,{\xi _n} = 0 0<αn<C,ξn=0,在边界上,用于确定b;
2.Bounded SV(三角形表示): α n = C , ξ n = v i o l a t i o n &ThickSpace; a m o u n t {\alpha _n} = C,{\xi _n} = violation\;amount αn=C,ξn=violationamount ,违反边界或在边界上

对于非SV( α n = 0 {\alpha _n} = 0 αn=0),有,
ξ n = 0 {\xi _n} = 0 ξn=0 ,远离边界或者在边界上

综上, α n {\alpha _n} αn可用在资料分析方面上。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值