SLAM
chenying66
医疗影像处理,深度学习,增强现实,NLP
展开
-
Rodrigus公式
《视觉SLAM十四讲》第三讲知识点之Rodrigus公式视觉SLAM十四讲——第三讲三维空间刚体运动中有提到Rodrigus’ Formula来实现旋转变量和旋转矩阵之间的变换关系。旋转矩阵的缺点:a. 一次旋转只有三个自由度,使用SO(3)旋转矩阵的表达方式存在冗余;b. 旋转矩阵本身带有约束(正交矩阵,且行列式为1),这些约束会使得求解变得更困难旋转向量:任意旋转都可以用一个旋转轴和一...原创 2019-11-17 11:29:47 · 318 阅读 · 0 评论 -
光流跟踪算法及OpenCV源代码探索
本文主要记录看光流跟踪算法的感悟,以及OpenCV中对应的实现源码的整理原文:Pyramidal Implementation of theLucas Kanade Feature Tracker Description of the algorithm 1光流算法相关概念特征跟踪的目的:对于第一张图像I上的位置u,在第二张图像J上找到一个位置v,使得I(u)和J(v)相近点x处的光流:...原创 2019-09-26 21:55:18 · 1514 阅读 · 0 评论 -
视觉SLAM十四讲——第九讲实践:设计前端
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第九讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理本章很有趣,将前面的知识点都联系在了一起,而且还会通过一系列方法解决诸如:相机运动过快、图像模糊、误匹配等实际问题1....原创 2019-09-27 17:56:51 · 1146 阅读 · 0 评论 -
视觉SLAM十四讲——第十讲:后端1
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第十讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理本讲主要是针对长时间内最优轨迹和地图的优化,减小累积误差对长时间运动带来的影响批量的处理方式:考虑在很长一段时间内的状态估计问题,而且不仅使用过去的信息更新自己的状态,也会用未来的信息来更新自己渐进的处理方式:当前状态只由过去的时刻决定,甚至...原创 2019-10-03 19:27:00 · 927 阅读 · 0 评论 -
ceres基本概念
ceres主要用于解决非线性最小二乘问题和通用的无约束最小化问题Non-linear Least Squares解决形如左侧的非线性最小二乘法问题加和中的项取名为ResidualBlock残差块,其中f表示依赖于参数块xi的CostFunction。[xi1, xi2, …, xik]叫做ParameterBlock参数块ρi是Loss Function,用于减小outliers对于非线...原创 2019-10-03 20:56:43 · 619 阅读 · 0 评论 -
视觉SLAM十四讲——第十一讲:后端2
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第十一讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理本讲主要介绍了位姿图和因子图,这在大部分的SLAM系统中都有被用到。因为在更大的场景中,大量特征点的存在会严重降低计算效率,导致计算量越来越大以至于无法实时化。上述两种可以在更大的场景中使用在长期的观测过程中,倾向于在优化几次之后就把特征点固...原创 2019-10-04 17:06:45 · 751 阅读 · 0 评论 -
visual hull可见外壳
visual hull用于简单、快速地获取三维模型。目前,获取三维模型的方式有:利用传统几何构造技术直接构造模型利用三维扫描设备对真实物体进行扫描,进而重建出模型利用从各个视角拍摄的真实物体的多幅图像重建模型.由图像重建三维模型技术又可分为两类:一类是通过多幅深度图像重建模型,另一类是通过多幅照片生成物体的可见外壳visual hull.Laurentini 最早提出了可见外壳(v...原创 2019-10-04 21:50:06 · 596 阅读 · 0 评论 -
视觉SLAM十四讲——第十二讲:回环检测
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第十二讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理回环检测的目的在于使得机器人可以判断是否之前运动到过当前位置,目的在于构建全局一致的地图回环检测:可以给出除了相邻帧之外的时隔更加久远的约束,它关系到估计的轨迹和地图在长时间下的正确性。且可以在跟踪算法丢失之后,利用回环检测进行重定位基于外...原创 2019-10-05 17:46:07 · 1859 阅读 · 0 评论 -
视觉SLAM十四讲——第十三讲:建图
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第十三讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理地图的作用:根据上层应用不同,地图所提供的功能也不同定位:基本功能,VO可以利用局部地图实现定位,回环检测部分可以确定机器人之前出现的位置。还可以将地图保存下来,待下一次开机时使用导航:使得机器人在地图中进行路径规划,指导机器人哪些地方...原创 2019-10-08 17:34:11 · 1807 阅读 · 0 评论 -
视觉SLAM十四讲——第八讲视觉里程计2
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第八讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理本讲主要介绍了直接法来实现视觉里程计,包含光流跟踪、直接法等特征点法的缺点:关键点的提取和描述子的计算非常耗时;使用特征点法时,忽略了特征点以外的其他特征;当相机运动到特征缺失的地方,会因为缺少纹理信息而无法找到足够的匹配点来计算相机运动针对...原创 2019-09-26 17:59:44 · 514 阅读 · 0 评论 -
视觉SLAM十四讲——第七讲视觉里程计1
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第七讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理本讲主要关注基于特征点方式的视觉里程计算法,涵盖了特征点提取、匹配,2D-3D, 3D-3D,点云匹配以及利用三角化获得2D图片上对应点的三维结构特征点法的前端:前端的目的是如何根据图像来估计相机运动。特征点法的前端运行稳定,对光照、动态物体不...原创 2019-09-25 16:20:24 · 686 阅读 · 0 评论 -
视觉SLAM十四讲——第六讲非线性优化
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第六讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理方程的位姿可以用变换矩阵来表示,然后用李代数进行优化。本讲主要将如何通过优化,来处理噪声数据,并使用图优化,来解决问题。本章的逻辑很清晰,首先提出问题:得到的数据中都存在噪声;接下来引入卡尔曼过滤器和非线性优化,指出需要通过最大化似然函数来得到...原创 2019-09-24 17:57:26 · 723 阅读 · 0 评论 -
基于单目视觉的同时定位与地图构建方法综述
基于单目视觉的同时定位与地图构建方法综述主要针对增强现实的应用场景。指出AR需要实时定位设备在环境中的方位。定位方案虽然已经有很多种,但多数方案要么在实际应用中存在诸多局限,要么代价太高难以普及。背景在AR应用中,由于虚拟物体的叠加目标通常为图像、视频,因此基于图像、视频等视觉信息的V-SLAM方案,对于确保虚实融合效果在几何上保持一致有着天然的优势。主要针对单目相机的V-SLAMV-S...原创 2019-09-19 09:30:11 · 950 阅读 · 0 评论 -
视觉SLAM十四讲——第三讲三维空间刚体运动
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第三讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理本讲主要介绍V-SLAM基本问题之一:一个刚体在三维空间中的运动是如何描述的。其中,介绍了旋转矩阵、四元数、欧拉角的意义。以及线性代数库Eigen。刚体:有位置还有自身的姿态向量与坐标:向量是不依赖于坐标系而存在的,且向量不会随着坐标系的旋转...原创 2019-09-19 11:54:12 · 788 阅读 · 0 评论 -
ubuntu 16.04+OpenCV 3.2.0 运行samples: 如pnp_detection
本篇博客主要是记录一下自己在Ubuntu环境下如何编译OpenCV,并且跑通samples文件夹中的样例,之前一直遇到undefined reference to xxx的问题,试了好久,都不能使其执行,现在终于可以了!!(撒花)以前都是在Windows上借助CMake对OpenCV进行configure, generate,然后使用Visual Studio生成解决方案,install等。方...原创 2019-09-20 11:36:37 · 664 阅读 · 0 评论 -
视觉SLAM十四讲——第四讲李群与李代数
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第四讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理本讲主要解决**什么样的相机位姿最符合当前观测数据**问题。一种典型的方法是把它构建成一个优化问题,求解最优的R,t,使得误差最小化。通过李群-李代数间的转换关系,可以将位姿估计变成无约束的优化问题,简化求解方式群:一种集合加上一种运算的代数结...原创 2019-09-20 14:42:51 · 1048 阅读 · 0 评论 -
SLAM中的因子图
看论文,发现很多SLAM方面的文章都涉及图优化,其中更包含有因子图。正好前段时间看了PRML,将其进行整理。(诶,果然理论的内容就是得及时用起来,现在又记不太清楚了)因子图来自于PRML第八章“图模型”有向图和无向图都使得若干个变量的一个全局函数能够表示为这些变量的子集上的因子的乘积。由因子图表示这个分解因子图表示分解的方法:在表示变量的结点的基础上,引入额外的结点表示因子本身将一组...原创 2019-09-20 15:12:10 · 6594 阅读 · 0 评论 -
OpenCV实时目标检测算法 Real_time_pose 解读
阅读Real time pose estimation of a textured object 相关文档(把看的内容及时记录下来,真的可以帮助理清思路。虽然花费的时间比之前久了,但是相信慢慢习惯了就好了)OpenCV的源码还是很友好的借助这个例子,把之前综述里面看到的跟踪、位姿估计等内容全部都连成了一条线,理顺了!开心!Model registration类仅适用于缺少待配准对象的3...原创 2019-09-21 20:18:50 · 1666 阅读 · 3 评论 -
SLAM中的Ransac的OpenCV源代码
本文主要记录一下比较基础的内容:RANSAC原理及OpenCV相关源代码RANSACRANSAC的基础内容:以下内容来源于:[1]RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。RA...原创 2019-09-22 21:02:35 · 1342 阅读 · 1 评论 -
视觉SLAM十四讲——第五讲相机与图像
@ 《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第五讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理本讲主要讨论了相机模型,描述投影关系,讲解相机内参和外参相机的针孔模型:需要了解焦距(物理成像平面到小孔的距离)、光心(针孔模型中的小孔)、物理成像平面和像素平面像素坐标系与成像平面之间,相差了一个缩放和原点平移:x轴缩放α,y轴缩放β,原点...原创 2019-09-23 18:03:43 · 1228 阅读 · 0 评论 -
视觉SLAM十四讲——第二讲初识SLAM
@《视觉SLAM十四讲》知识点与习题《视觉SLAM十四讲》第二讲知识点整理+习题正在学习SLAM相关知识,将一些关键点及时记录下来。知识点整理本讲主要是介绍了SLAM,主要是视觉SLAM方面的基础知识,对一些术语进行了大体的解释,并且将整本书的内容的逻辑梳理了一遍,手把手上手视觉SLAM。SLAM问题的本质:对运动主体自身和周围环境空间不确定性的估计定位 ,“我在什么地方”,即自身状...原创 2019-09-18 14:02:46 · 984 阅读 · 0 评论