@ 《视觉SLAM十四讲》知识点与习题
《视觉SLAM十四讲》第九讲知识点整理+习题
正在学习SLAM相关知识,将一些关键点及时记录下来。
知识点整理
本章很有趣,将前面的知识点都联系在了一起,而且还会通过一系列方法解决诸如:相机运动过快、图像模糊、误匹配等实际问题
- 单目视觉相对复杂,RGB-D最为简单,没有初始化,也没有尺度问题
- 数据单元
- 帧: 将认为重要的帧保存起来,并认为相机轨迹可以用这些关键帧来描述,多基于工程经验
- 路标:图像中的特征点。在相机运动后,还能估计路标的3D位置。通常,将路标点放在一个地图当中,并将新来的帧与地图中的路标点进行匹配,估计相机位姿
- 视觉里程计:Frame, Camera, MapPoint, Map以及Config。根据输入的图像,计算相机运动和特征点位置
- 两两帧的视觉里程计:此时,是简单的模拟一下VO,所以存在较大的缺陷。此时,只关心运动,不关心结构,即一旦通过特征点成功求出了运动,就不需要这一帧的特征点了
- 此时的缺点:在进行位姿估计时,使用RANSAC求出的PnP解,该方法易受噪声影响,改进是:用RANSAC的解作为初值,再用非线性优化求一个最优值
- 此时直接使用3D点的深度作为真值来计算,此时也存在一定的误差