视觉SLAM十四讲——第九讲实践:设计前端

本文介绍了视觉SLAM中的前端设计,包括帧、路标、视觉里程计的概念,以及局部地图和全局地图的差异。讨论了两两帧间视觉里程计的优化方法,如使用RANSAC和非线性优化。还详细阐述了Camera、Frame、MapPoint和Map类的设计,并提及了基于特征点和LK光流法的Visual Odometry实现。
摘要由CSDN通过智能技术生成

@ 《视觉SLAM十四讲》知识点与习题

《视觉SLAM十四讲》第九讲知识点整理+习题

正在学习SLAM相关知识,将一些关键点及时记录下来。

知识点整理

本章很有趣,将前面的知识点都联系在了一起,而且还会通过一系列方法解决诸如:相机运动过快、图像模糊、误匹配等实际问题

  1. 单目视觉相对复杂,RGB-D最为简单,没有初始化,也没有尺度问题
  2. 数据单元
    1. : 将认为重要的帧保存起来,并认为相机轨迹可以用这些关键帧来描述,多基于工程经验
    2. 路标:图像中的特征点。在相机运动后,还能估计路标的3D位置。通常,将路标点放在一个地图当中,并将新来的帧与地图中的路标点进行匹配,估计相机位姿
  3. 视觉里程计:Frame, Camera, MapPoint, Map以及Config。根据输入的图像,计算相机运动和特征点位置
  4. 两两帧的视觉里程计:此时,是简单的模拟一下VO,所以存在较大的缺陷。此时,只关心运动,不关心结构,即一旦通过特征点成功求出了运动,就不需要这一帧的特征点了
    1. 此时的缺点:在进行位姿估计时,使用RANSAC求出的PnP解,该方法易受噪声影响,改进是:用RANSAC的解作为初值,再用非线性优化求一个最优值
    2. 此时直接使用3D点的深度作为真值来计算,此时也存在一定的误差
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值