一、线性代数中的线性方程组

这篇博客整理了线性代数中的线性方程组概念,包括矩阵记法、增广矩阵和相容性的定义。介绍了行初等变换的三种类型,并详细阐述了行化简和阶梯型矩阵的特性。同时,文章还提到了线性变换的定义和基本性质。
摘要由CSDN通过智能技术生成

最近读了《线性代数及其应用》、《程序员的数学3:线性代数》 整理笔记,方便复习。

 一、线性代数中的线性方程组

1.1线性方程组

   形如

             a1x1+a2x2+…+anxn=b称为线性方程

     矩阵记号

            x1-2x2+x3=0

            2x2-8x2=8

            -4x1+5x2+9x3=-9

系数写在对齐的一列中,为系数矩阵

将等号增加等号右边一列为增广矩阵


方程组有解称为相容

行初等变换

1.(倍加变换)把某一行换成它本身与另一行的倍数和

2.(对换变换)把两行对换

3.(倍乘变换)把某一行的所有元素乘以同一个非零数


1.2行化简与阶梯型矩阵

阶梯型(行阶梯型)定义:

             每一非零行在每一零行之上

             某一行的先导元素所在的列位于前一行先导元素的右面

             某一行先导元素所在列下方元素为零

简化阶梯型

             每一非零行的先导元素是1

             每一先导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值