捷联惯导系统学习4.1(惯导数值更新算法)

1 常用坐标系的定义

(1)地心惯性坐标系(i 系,inertial frame)
o i x i y i z i o_ix_iy_iz_i oixiyizi表示,原点以地球为中心,
原点 o i o_i oi在地球中心
o i x i o_ix_i oixi在地球平面内,指向春分点
o i z i o_iz_i oizi为地球自转轴,指向北极
o i y i o_iy_i oiyi轴在地球平面内,垂直于 o i x i o_ix_i oixi o i z i o_iz_i oizi

(2)地球坐标系(e 系,earth frame)(地心固坐标系)
o e x e y e z e o_ex_ey_ez_e oexeyeze表示,原点为地球中心,与地球固连。
o g x g o_gx_g ogxg:在赤道平面内指向本初子午线
o g y g o_gy_g ogyg:在地球赤道平面内
o g z g o_gz_g ogzg:为地球自转轴,指向北极
地球坐标系相对于惯性坐标系的角运动就是地球自转速度,常用:
w i e = 7.2921151467 × 1 0 − 5 r a d / s w_{ie}=7.2921151467×10^{-5} rad/s wie=7.2921151467×105rad/s

(3)地理坐标系(g系,geographic frame)
o g x g y g z g o_gx_gy_gz_g ogxgygzg表示“东北天”坐标系作为导航参考坐标系
o g o_g og定义为运载体的中心或重心。
o g x g o_gx_g ogxg指向地理东向
o g y g o_gy_g ogyg指向地理北向
o g z g o_gz_g ogzg垂直于当地旋转椭圆面,指向天向

(4)导航坐标系(n系,mavigation frame)
o n x n y n z n o_nx_ny_nz_n onxnynzn表示,惯导系统求解导航参数所用坐标系
常用当地坐标系作为参考坐标系,常常为地理坐标系

(5)载体坐标系(b系,体系,body frame)
o b x b y b z b o_bx_by_bz_b obxbybzb
o b o_b ob:原点定义为运载体的重心或中心
o b x b o_bx_b obxb沿载体面向右
o b y b o_by_b obyb沿载体纵轴向前
o b z b o_bz_b obzb沿载体立轴向上

2 姿态更新算法

选择东北天坐标系地理坐标系,作为导航参考坐标系,记为n系
则n系的微分方程为:
w b n × : 坐 标 系 n 下 , 载 体 ( b 系 ) 的 角 速 度 , ( 实 际 中 不 能 直 接 获 得 ) w_b^n×:坐标系n下,载体(b系)的角速度,(实际中不能直接获得) wbn×:nb
C b n : n − > b 系 的 转 换 矩 阵 C_b^n:n->b系的转换矩阵 Cbn:n>b
C ˙ b n = C b n ( w b n × ) \dot C_b^n=C_b^n(w_b^n×) C˙bn=Cbn(wbn×)
由于: ( w b n × ) (w_b^n×) (wbn×)不能直接测得:
w b n n = w i b b + w n i b = w i b b − w i n b w_{bn}^{n}=w_{ib}^b+w^b_{ni}=w_{ib}^b-w^b_{in} wbnn=wibb+wnib=wibbwinb
w b n n : n 系 相 对 于 b 的 角 速 度 , 在 n 系 下 的 转 速 w_{bn}^{n}:n系相对于b的角速度,在n系下的转速 wbnn:nbn
w i b b : 陀 螺 仪 的 输 出 : 载 体 在 b 系 相 对 于 i 系 的 转 速 , 在 b 系 下 的 表 示 w_{ib}^b:陀螺仪的输出:载体在b系相对于i系的转速,在b系下的表示 wibb::bib

C ˙ b n = C b n ( w b n × ) = C b n [ ( w i b b − w i n b ) × ] = C b n ( w i b b × ) − ( w i n n × ) C b n \dot C_b^n=C_b^n(w_b^n×)=C_b^n[(w_{ib}^b-w^b_{in})×]=C_b^n(w_{ib}^b×)-(w_{in}^n×)C_b^n C˙bn=Cbn(wbn×)=Cbn[(wibbwinb)×]=Cbn(wibb×)(winn×)Cbn
w i n n = w i e n + w e n n w_{in}^n=w_{ie}^n+w_{en}^n winn=wien+wenn
w i e : 地 球 自 转 速 度 ; L : 地 理 纬 度 ; h : 高 度 w_{ie}:地球自转速度;L:地理纬度;h:高度 wie:;L:;h
w i e n = [ 0 w i e c o s L w i e s i n L ] T w_{ie}^n=\left[\begin{matrix} 0&w_{ie}cosL&w_{ie}sinL\\ \end{matrix}\right]^T wien=[0wiecosLwiesinL]T
w e n n = [ − v N R M + h − v E R N + h v E R N + h t a n L ] T w_{en}^n=\left[\begin{matrix} -\frac{v_N}{R_M+h}&-\frac{v_E}{R_N+h}&\frac{v_E}{R_N+h}tanL\\ \end{matrix}\right]^T wenn=[RM+hvNRN+hvERN+hvEtanL]T
R M = R e ( 1 − e 2 ) ( 1 − e 2 s i n 2 L ) 3 / 2 ( R e : 地 球 长 半 径 , e : 椭 圆 偏 心 率 ) R_M=\frac{R_e(1-e^2)}{(1-e^2sin^2L)^{3/2}}(R_e:地球长半径,e:椭圆偏心率) RM=(1e2sin2L)3/2Re(1e2)(Re:e:)
R N = R e 1 − e 2 s i n 2 L R_N=\frac{R_e}{\sqrt{1-e^2sin^2L}} RN=1e2sin2L Re

捷联惯导导数值更新算法
C b ( m ) n ( m ) = C n ( m − 1 ) n ( m ) C b ( m − 1 ) n ( m − 1 ) C b ( m ) b ( m − 1 ) C_{b(m)}^{n(m)}=C_{n(m-1)}^{n(m)}C_{b(m-1)}^{n(m-1)}C_{b(m)}^{b(m-1)} Cb(m)n(m)=Cn(m1)n(m)Cb(m1)n(m1)Cb(m)b(m1)

若采用二子样法测得 Δ θ 1 , Δ θ 2 \Delta\theta_1,\Delta\theta_2 Δθ1,Δθ2
得到: ϕ i b ( m ) b = ( Δ θ 1 + Δ θ 2 ) + 2 3 Δ θ 1 × Δ θ 2 \phi_{ib(m)}^b=(\Delta\theta_1+\Delta\theta_2)+\frac{2}{3}\Delta\theta_1×\Delta\theta_2 ϕib(m)b=(Δθ1+Δθ2)+32Δθ1×Δθ2
C b ( m ) b ( m − 1 ) = M R V ( ϕ i b ( m ) b ) = I + s i n ∣ ϕ i b ( m ) b ∣ ∣ ϕ i b ( m ) b ∣ ( ϕ i b ( m ) b × ) + 1 − c o s ∣ ϕ i b ( m ) b ∣ ∣ ϕ i b ( m ) b ∣ 2 ( ϕ i b ( m ) b × ) 2 C_{b(m)}^{b(m-1)}=M_{RV}(\phi_{ib(m)}^b)=I+\frac{sin|\phi_{ib(m)}^b|}{|\phi_{ib(m)}^b|}(\phi_{ib(m)}^b\times)+\frac{1-cos|\phi_{ib(m)}^b|}{|\phi_{ib(m)}^b|^2}(\phi_{ib(m)}^b\times)^2 Cb(m)b(m1)=MRV(ϕib(m)b)=I+ϕib(m)bsinϕib(m)b(ϕib(m)b×)+ϕib(m)b21cosϕib(m)b(ϕib(m)b×)2
C n ( m − 1 ) n ( m ) = M R V T ( ϕ i n ( m ) n ) ≈ M R V T ( T w i n ( m ) n ) ( w i n ( m ) n ) 由 速 度 和 位 置 引 起 这 里 我 们 认 为 是 常 量 ) C_{n(m-1)}^{n(m)}=M^T_{RV}(\phi_{in(m)}^n)\approx M_{RV}^T(Tw_{in(m)}^n)(w_{in(m)}^n)由速度和位置引起这里我们认为是常量) Cn(m1)n(m)=MRVT(ϕin(m)n)MRVT(Twin(m)n)win(m)n)

3 比力方程

比力:加速度计测量的载体相对惯性空间的绝对加速度和引力加速度之差
运载体在导航系下的惯导结算方程:
运载体在地球表面运动时比力方程,可达 1 0 − 7 g 10^{-7}g 107g对于惯性级导航可忽略。
g n : 重 力 加 速 度 g^n:重力加速度 gn:
f s f b : 加 速 度 计 测 量 的 比 力 f_{sf}^b:加速度计测量的比力 fsfb:
w e n n × v e n n : 由 载 体 引 起 的 对 地 向 心 加 速 度 w_{en}^n×v_{en}^n:由载体引起的对地向心加速度 wenn×venn
2 w i e n × v e n n : 由 载 体 和 地 球 自 转 引 起 的 哥 氏 加 速 度 2w_{ie}^n×v_{en}^n:由载体和地球自转引起的哥氏加速度 2wien×venn
v ˙ e n n : 运 载 体 在 导 航 系 下 的 运 动 加 速 度 \dot v_{en}^n:运载体在导航系下的运动加速度 v˙enn:
C b n : b 系 到 n 系 的 转 换 矩 阵 C_b^n:b系到n系的转换矩阵 Cbn:bn
v ˙ e n n = C b n f s f b − ( 2 w i e n + w e n n ) × v e n n + g n \dot v_{en}^n=C_b^nf_{sf}^b-(2w_{ie}^n+w_{en}^n)×v_{en}^n+g^n v˙enn=Cbnfsfb(2wien+wenn)×venn+gn

4 速度更新算法

利用比力方程在 [ t m − 1 , t m ] [t_{m-1},t_m] [tm1,tm]内积分,求得速度的递推更新公式为:
v m n ( m ) : t m 时 刻 惯 导 速 度 v_m^{n(m)}:t_m时刻惯导速度 vmn(m):tm
v m − 1 n ( m − 1 ) : t m − 1 时 刻 惯 导 速 度 v_{m-1}^{n(m-1)}:t_{m-1}时刻惯导速度 vm1n(m1):tm1
Δ v s f ( m ) n : 导 航 比 力 速 度 增 量 \Delta v_{sf(m)}^n:导航比力速度增量 Δvsf(m)n:
Δ v c o r / g ( m ) n : 有 害 加 速 度 增 量 \Delta v_{cor/g(m)}^n:有害加速度增量 Δvcor/g(m)n:

v m n ( m ) = v m − 1 n ( m − 1 ) + Δ v s f ( m ) n + Δ v c o r / g ( m ) n v_m^{n(m)}=v_{m-1}^{n(m-1)}+\Delta v_{sf(m)}^n+\Delta v_{cor/g(m)}^n vmn(m)=vm1n(m1)+Δvsf(m)n+Δvcor/g(m)n
Δ v s f ( m ) n = ∫ t m − 1 t m C b n ( t ) f s f b ( t ) d t \Delta v_{sf(m)}^n=\int_{t_{m-1}}^{t_m}C_b^n(t)f_{sf}^b(t)dt Δvsf(m)n=tm1tmCbn(t)fsfb(t)dt
Δ v c o r / g ( m ) n = ∫ t m − 1 t m { − [ 2 w i e n ( t ) + w e n n ( t ) ] × v n ( t ) + g n ( t ) } d t \Delta v_{cor/g(m)}^n=\int_{t_{m-1}}^{t_m}\{-[2w_{ie}^n(t)+w_{en}^n(t)]×v^n(t)+g^n(t)\}dt Δvcor/g(m)n=tm1tm{[2wien(t)+wenn(t)]×vn(t)+gn(t)}dt
Δ v c o r / g ( m ) n \Delta v_{cor/g(m)}^n Δvcor/g(m)n的计算():
Δ v c o r / g ( m ) n ≈ { − [ 2 w i e ( m − 1 / 2 ) n + w e n ( m − 1 / 2 ) n ] × v m − 1 / 2 n + g m − 1 / 2 n } T \Delta v_{cor/g(m)}^n\approx \{ -[2w_{ie(m-1/2)}^n+w_{en(m-1/2)}^n]×v_{m-1/2}^{n}+g_{m-1/2}^{n}\}T Δvcor/g(m)n{[2wie(m1/2)n+wen(m1/2)n]×vm1/2n+gm1/2n}T
使用外推法计算:
x m − 1 / 2 = x m − 1 + x m − 1 − x m − 2 2 ( x = w i e n , w e n n , v n , g n ) x_{m-1/2}=x_{m-1}+\frac{x_{m-1}-x_{m-2}}{2}(x=w_{ie}^n,w_{en}^n,v^n,g^n) xm1/2=xm1+2xm1xm2(x=wien,wenn,vn,gn)
Δ v s f ( m ) n \Delta v_{sf(m)}^n Δvsf(m)n的计算():
θ i b b ( t , t m − 1 ) : 角 增 量 \theta^{b}_{ib}(t,t_{m-1}):角增量 θibb(t,tm1):
Δ v s f ( m ) n ≈ C b ( m − 1 ) n ( m − 1 ) ∫ t m − 1 t m f s f b ( t ) d t − ∫ t m − 1 t m θ i n n ( t , t m − 1 ) × [ C b ( m − 1 ) n ( m − 1 ) f s f b ( t ) ] d t + C b ( m − 1 ) n ( m − 1 ) ∫ t m − 1 t m θ i b b ( t , t m − 1 ) f s f b ( t ) d t \Delta v_{sf(m)}^n \approx C_{b(m-1)}^{n{(m-1)}}\int_{t_{m-1}}^{t_m}f_{sf}^b(t)dt-\int_{t_{m-1}}^{t_m}\theta_{in}^n(t,t_{m-1})×[C_{b(m-1)}^{n(m-1)}f_{sf}^b(t)]dt+C_{b(m-1)}^{n{(m-1)}}\int_{t_{m-1}}^{t_m}\theta^{b}_{ib}(t,t_{m-1})f_{sf}^b(t)dt Δvsf(m)nCb(m1)n(m1)tm1tmfsfb(t)dttm1tmθinn(t,tm1)×[Cb(m1)n(m1)fsfb(t)]dt+Cb(m1)n(m1)tm1tmθibb(t,tm1)fsfb(t)dt
∫ t m − 1 t m θ i b b ( t , t m − 1 ) f s f b ( t ) d t = Δ v r o t ( m ) b ( m − 1 ) + Δ v s c u l ( m ) b ( m − 1 ) \int_{t_{m-1}}^{t_m}\theta^{b}_{ib}(t,t_{m-1})f_{sf}^b(t)dt=\Delta v^{b(m-1)}_{rot(m)}+\Delta v^{b(m-1)}_{scul(m)} tm1tmθibb(t,tm1)fsfb(t)dt=Δvrot(m)b(m1)+Δvscul(m)b(m1):
{ Δ v r o t ( m ) b ( m − 1 ) = 1 2 Δ θ m × Δ v m 速 度 的 旋 转 误 差 补 偿 Δ v s c u l ( m ) b ( m − 1 ) = 1 2 ∫ t m − 1 t m θ i b b ( t , t m − 1 ) × f s f b ( t ) + v s f b ( t , t m − 1 ) × w i b b ( t ) d t 划 桨 误 差 补 偿 Δ θ m = ∫ t m − 1 m w i b b ( t ) d t 陀 螺 仪 采 样 角 增 量 Δ v m = ∫ t m − 1 t m f s f b ( t ) d t 加 速 计 采 样 比 力 速 度 增 量 \begin{cases} \Delta v^{b(m-1)}_{rot(m)}=\frac{1}{2} \Delta \theta_m×\Delta v_m&速度的旋转误差补偿 \\ \Delta v^{b(m-1)}_{scul(m)}=\frac{1}{2}\int_{t_{m-1}}^{t_m}\theta^{b}_{ib}(t,t_{m-1})×f_{sf}^b(t)+v_{sf}^b(t,t_{m-1})×w_{ib}^b(t)dt&划桨误差补偿\\ \Delta \theta_m=\int_{t_{m-1}}^mw_{ib}^b(t)dt&陀螺仪采样角增量 \\ \Delta v_m=\int_{t_{m-1}}^{t_m}f_{sf}^b(t)dt&加速计采样比力速度增量\\ \end{cases} Δvrot(m)b(m1)=21Δθm×ΔvmΔvscul(m)b(m1)=21tm1tmθibb(t,tm1)×fsfb(t)+vsfb(t,tm1)×wibb(t)dtΔθm=tm1mwibb(t)dtΔvm=tm1tmfsfb(t)dt
假设陀螺仪角速度和加速度比力测量输出均为线性模型
即:
{ w i b b ( t ) = a + 2 b ( t − t m − 1 ) 陀 螺 仪 采 样 角 增 量 f s f b ( t ) = A + 2 B ( t − t m − 1 ) 加 速 计 采 样 比 力 速 度 增 量 \begin{cases} w_{ib}^b(t)=a+2b(t-t_{m-1})&陀螺仪采样角增量 \\ f_{sf}^b(t)=A+2B(t-t_{m-1})&加速计采样比力速度增量\\ \end{cases} {wibb(t)=a+2b(ttm1)fsfb(t)=A+2B(ttm1)
得到
{ Δ θ m = ∫ t m − 1 t m w i b b ( t ) d t = a ( t − t m − 1 ) + b ( t − t m − 1 ) 2 陀 螺 仪 采 样 角 增 量 Δ v m = ∫ t m − 1 t m f s f b ( t ) d t = A ( t − t m − 1 ) + B ( t − t m − 1 ) 2 加 速 计 采 样 比 力 速 度 增 量 \begin{cases} \Delta \theta_m=\int_{t_{m-1}}^{t_m}w_{ib}^b(t)dt=a(t-t_{m-1})+b(t-t_{m-1})^2&陀螺仪采样角增量 \\ \Delta v_m=\int_{t_{m-1}}^{t_m}f_{sf}^b(t)dt=A(t-t_{m-1})+B(t-t_{m-1})^2&加速计采样比力速度增量\\ \end{cases} {Δθm=tm1tmwibb(t)dt=a(ttm1)+b(ttm1)2Δvm=tm1tmfsfb(t)dt=A(ttm1)+B(ttm1)2
可以得到:
{ Δ v r o t ( m ) b ( m − 1 ) = 1 2 Δ θ m × Δ v m 速 度 的 旋 转 误 差 补 偿 Δ v s c u l ( m ) b ( m − 1 ) = ( a × B + A × b ) ( t m − t m − 1 ) 3 6 划 桨 误 差 补 偿 \begin{cases} \Delta v^{b(m-1)}_{rot(m)}=\frac{1}{2} \Delta \theta_m×\Delta v_m&速度的旋转误差补偿 \\ \Delta v^{b(m-1)}_{scul(m)}=(a×B+A×b)\frac{(t_m-t_{m-1})^3}{6}&划桨误差补偿\\ \end{cases} {Δvrot(m)b(m1)=21Δθm×ΔvmΔvscul(m)b(m1)=(a×B+A×b)6(tmtm1)3
若采用2子样法,在 [ t m − 1 , t m ] [t_{m-1},t_m] [tm1,tm]时间两次等间隔采样数据为:
Δ θ m 1 , Δ θ m 2 , Δ v m 1 , Δ v m 2 , h = T 2 = t m − t m − 1 2 \Delta\theta_{m1},\Delta\theta_{m2},\Delta v_{m1},\Delta v_{m2},h=\frac{T}{2}=\frac{t_m-t_{m-1}}{2} Δθm1,Δθm2,Δvm1,Δvm2,h=2T=2tmtm1
可以得到:
a = 3 Δ θ m 1 − Δ θ m 2 2 h , b = θ m 2 − θ m 1 2 h 2 a=\frac{3\Delta\theta_{m1}-\Delta\theta_{m2}}{2h},b=\frac{\theta_{m2}-\theta_{m1}}{2h^2} a=2h3Δθm1Δθm2,b=2h2θm2θm1
A = 3 Δ v m 1 − Δ v m 2 2 h , B = v m 2 − v m 1 2 h 2 A=\frac{3\Delta v_{m1}-\Delta v_{m2}}{2h},B=\frac{v_{m2}-v_{m1}}{2h^2} A=2h3Δvm1Δvm2,B=2h2vm2vm1
{ Δ v r o t ( m ) b ( m − 1 ) = 1 2 Δ θ m × Δ v m 速 度 的 旋 转 误 差 补 偿 Δ v s c u l ( m ) b ( m − 1 ) = 2 3 ( Δ θ m 1 × Δ v m 2 + Δ v m 1 × Δ θ m 2 ) 划 桨 误 差 补 偿 \begin{cases} \Delta v^{b(m-1)}_{rot(m)}=\frac{1}{2} \Delta \theta_m×\Delta v_m&速度的旋转误差补偿 \\ \Delta v^{b(m-1)}_{scul(m)}=\frac{2}{3}( \Delta \theta_{m1}×\Delta v_{m2}+\Delta v_{m1}×\Delta \theta_{m2})&划桨误差补偿\\ \end{cases} {Δvrot(m)b(m1)=21Δθm×ΔvmΔvscul(m)b(m1)=32(Δθm1×Δvm2+Δvm1×Δθm2)
∫ t m − 1 t m θ i n n ( t , t m − 1 ) × [ C b ( m − 1 ) n ( m − 1 ) f s f b ( t ) ] d t ≈ T 6 w i n ( m − 1 / 2 ) n × [ C b ( m − 1 ) n ( m − 1 ) ( Δ v m 1 + Δ v m 2 ) ] \int_{t_{m-1}}^{t_m}\theta_{in}^n(t,t_{m-1})×[C_{b(m-1)}^{n(m-1)}f_{sf}^b(t)]dt\approx \frac{T}{6}w_{in(m-1/2)}^n×[C_{b(m-1)}^{n(m-1)}(\Delta v_{m1}+\Delta v_{m2})] tm1tmθinn(t,tm1)×[Cb(m1)n(m1)fsfb(t)]dt6Twin(m1/2)n×[Cb(m1)n(m1)(Δvm1+Δvm2)]

最后得到:
Δ v s f ( m ) n = C b ( m − 1 ) n ( m − 1 ) Δ v m − T 6 w i n ( m − 1 / 2 ) n × [ C b ( m − 1 ) n ( m − 1 ) ( Δ v m 1 + 5 Δ v m 2 ) ] + C b ( m − 1 ) n ( m − 1 ) ( Δ v r o t ( m ) b ( m − 1 ) + Δ v s c u l ( m ) b ( m − 1 ) ) \Delta v_{sf(m)}^n=C_{b(m-1)}^{n(m-1)}\Delta v_m-\frac{T}{6}w_{in(m-1/2)}^n×[C_{b(m-1)}^{n(m-1)}(\Delta v_{m1}+5\Delta v_{m2})]+C_{b(m-1)}^{n(m-1)}(\Delta v_{rot(m)}^{b(m-1)}+\Delta v_{scul(m)}^{b(m-1)}) Δvsf(m)n=Cb(m1)n(m1)Δvm6Twin(m1/2)n×[Cb(m1)n(m1)(Δvm1+5Δvm2)]+Cb(m1)n(m1)(Δvrot(m)b(m1)+Δvscul(m)b(m1))
若在 [ t m − 1 , t m ] [t_{m-1},t_m] [tm1,tm]内的比力变化不大,可以近似看作 Δ v m 1 ≈ Δ v m 2 ≈ 1 2 Δ v m \Delta v_{m1} \approx \Delta v_{m2} \approx \frac{1}{2}\Delta v_m Δvm1Δvm221Δvm
Δ v s f ( m ) n ≈ [ I − T 2 ( w i n ( m − 1 / 2 ) n × ) ] C b ( m − 1 ) n ( m − 1 ) ( Δ v m + Δ v r o t ( m ) b ( m − 1 ) + Δ v s c u l ( m ) b ( m − 1 ) ) \Delta v_{sf(m)}^n \approx [I-\frac{T}{2}(w_{in(m-1/2)}^n×)]C_{b(m-1)}^{n(m-1)}(\Delta v_m+\Delta v_{rot(m)}^{b(m-1)}+\Delta v_{scul(m)}^{b(m-1)}) Δvsf(m)n[I2T(win(m1/2)n×)]Cb(m1)n(m1)(Δvm+Δvrot(m)b(m1)+Δvscul(m)b(m1))

5 划桨误差补偿

(1)使用二子样法,测到划桨误差在多项式条件下的误差补偿如下(已在上方求解):
Δ v s c u l ( m ) b ( m − 1 ) = 2 3 ( Δ θ m 1 × Δ v m 2 + Δ v m 1 × Δ θ m 2 ) \Delta v^{b(m-1)}_{scul(m)}=\frac{2}{3}( \Delta \theta_{m1}×\Delta v_{m2}+\Delta v_{m1}×\Delta \theta_{m2}) Δvscul(m)b(m1)=32(Δθm1×Δvm2+Δvm1×Δθm2)
(2)理想条件下的划桨误差补偿
划桨运动:假设坐标系(b系:物体坐标系):绕其x轴做角振动,绕其y轴做线振动,两者振动频率相同为 Ω \Omega Ω,单相差 9 0 。 90^。 90
则其角度速度和比例分别为:
w i b b ( t ) = [ a Ω t s i n Ω t 0 0 ] w_{ib}^b(t)=\left[\begin{matrix} a\Omega tsin\Omega t&0&0\\ \end{matrix}\right] wibb(t)=[aΩtsinΩt00]
f s f b ( t ) = [ 0 β Ω c o s Ω t 0 ] f_{sf}^b(t)=\left[\begin{matrix} 0&\beta\Omega cos\Omega t&0\\ \end{matrix}\right] fsfb(t)=[0βΩcosΩt0]
在时间 [ t m − 1 , t ] [t_{m-1},t] [tm1,t]内的角增量和比力增量为:
θ i b b ( t m − 1 , t ) = ∫ t m − 1 t w i b b ( τ ) d τ = [ − a ( sin ⁡ Ω t − cos ⁡ Ω t m − 1 ) 0 0 ] T \theta_{ib}^b(t_{m-1},t)=\int_{t_{m-1}}^{t}w_{ib}^b(\tau)d\tau=\left[\begin{matrix} -a(\sin\Omega t-\cos\Omega t_{m-1})&0&0\\ \end{matrix}\right]^T θibb(tm1,t)=tm1twibb(τ)dτ=[a(sinΩtcosΩtm1)00]T
v s f b ( t m − 1 , t m ) = ∫ t m − 1 t f s f b ( τ ) d τ = [ 0 β ( sin ⁡ Ω t − s i n Ω t t m − 1 ) 0 ] T v_{sf}^b(t_{m-1},t_m)=\int_{t_{m-1}}^{t}f_{sf}^b(\tau)d\tau=\left[\begin{matrix} 0&\beta(\sin\Omega t-sin\Omega t_{t_{m-1}})&0\\ \end{matrix}\right]^T vsfb(tm1,tm)=tm1tfsfb(τ)dτ=[0β(sinΩtsinΩttm1)0]T
带入:
Δ v s c u l ( m ) b ( m − 1 ) = 1 2 ∫ t m − 1 t m θ i b b ( t , t m − 1 ) × f s f b ( t ) + v s f b ( t , t m − 1 ) × w i b b ( t ) d t \Delta v^{b(m-1)}_{scul(m)}=\frac{1}{2}\int_{t_{m-1}}^{t_m}\theta^{b}_{ib}(t,t_{m-1})×f_{sf}^b(t)+v_{sf}^b(t,t_{m-1})×w_{ib}^b(t)dt Δvscul(m)b(m1)=21tm1tmθibb(t,tm1)×fsfb(t)+vsfb(t,tm1)×wibb(t)dt
= 1 2 ∫ t m − 1 t m [ θ i b b ( t , t m ) + v s f b ( t , t m − 1 ) ] × [ f s f b ( t ) + w i b b ( t ) ] d t =\frac{1}{2}\int_{t_{m-1}}^{t_m}[ \theta_{ib}^b(t,t_m)+v_{sf}^b(t,t_{m-1})]×[f_{sf}^b(t)+w_{ib}^b(t)]dt =21tm1tm[θibb(t,tm)+vsfb(t,tm1)]×[fsfb(t)+wibb(t)]dt
划桨误差与圆锥误差的不可交换式形式上一致,因此将圆锥误差的补偿算法应用于划桨误差算法,圆锥误差求解
求得划桨误差的补偿公式如下:
Δ v s c u l ( m ) b ( m − 1 ) = ∑ i = 1 N − 1 k N − i Δ θ m i × Δ v m N + ∑ i = 1 N − 1 k N − i Δ v m i × Δ θ m N \Delta v^{b(m-1)}_{scul(m)}=\sum_{i=1}^{N-1}k_{N-i}\Delta\theta_{mi}\times\Delta v_{mN}+\sum_{i=1}^{N-1}k_{N-i}\Delta v_{mi}\times\Delta \theta_{mN} Δvscul(m)b(m1)=i=1N1kNiΔθmi×ΔvmN+i=1N1kNiΔvmi×ΔθmN
剩余误差为(未补偿的高阶误差项): ρ n 与 圆 锥 误 差 补 偿 ρ n 相 同 \rho_n与圆锥误差补偿\rho_n相同 ρnρn
▽ n = 1 T [ Δ v ‾ s c u l ( m ) b ( m − 1 ) − Δ v s c u l ( m ) b ( m − 1 ) ] z = ρ n α β Ω ( Ω T ) 2 N + 1 T ( N ≥ 1 ) \bigtriangledown n=\frac{1}{T}[\Delta \overline v^{b(m-1)}_{scul(m)}-\Delta v^{b(m-1)}_{scul(m)}]_z=\rho_n\frac{\alpha\beta\Omega(\Omega T)^{2N+1}}{T}(N\geq1) n=T1[Δvscul(m)b(m1)Δvscul(m)b(m1)]z=ρnTαβΩ(ΩT)2N+1(N1)

6 位置更新算法

在这里插入图片描述

公 式 ( 1 ) 公式(1) 1计算等效旋转矢量
ϕ i b ( m ) b = ( Δ θ 1 + Δ θ 2 ) + 2 3 Δ θ 1 × Δ θ 2 \phi_{ib(m)}^b=(\Delta\theta_1+\Delta\theta_2)+\frac{2}{3}\Delta\theta_1×\Delta\theta_2 ϕib(m)b=(Δθ1+Δθ2)+32Δθ1×Δθ2
公 式 ( 2 ) 公式(2) 2计算误差补偿值
Δ v r o t ( m ) b ( m − 1 ) = 1 2 Δ θ m × Δ v m \Delta v^{b(m-1)}_{rot(m)}=\frac{1}{2} \Delta \theta_m×\Delta v_m Δvrot(m)b(m1)=21Δθm×Δvm
Δ v s c u l ( m ) b ( m − 1 ) = 2 3 ( Δ θ m 1 × Δ v m 2 + Δ v m 1 × Δ θ m 2 ) \Delta v^{b(m-1)}_{scul(m)}=\frac{2}{3}( \Delta \theta_{m1}×\Delta v_{m2}+\Delta v_{m1}×\Delta \theta_{m2}) Δvscul(m)b(m1)=32(Δθm1×Δvm2+Δvm1×Δθm2)
公 式 ( 3 ) 公式(3) 3捷联惯导导数值更新算法
C b ( m ) n ( m ) = C n ( m − 1 ) n ( m ) C b ( m − 1 ) n ( m − 1 ) C b ( m ) b ( m − 1 ) C_{b(m)}^{n(m)}=C_{n(m-1)}^{n(m)}C_{b(m-1)}^{n(m-1)}C_{b(m)}^{b(m-1)} Cb(m)n(m)=Cn(m1)n(m)Cb(m1)n(m1)Cb(m)b(m1)
公 式 ( 4 ) 公式(4) 4速度更新算法
Δ v s f ( m ) n ≈ [ I − T 2 ( w i n ( m − 1 / 2 ) n × ) ] C b ( m − 1 ) n ( m − 1 ) ( Δ v m + Δ v r o t ( m ) b ( m − 1 ) + Δ v s c u l ( m ) b ( m − 1 ) ) \Delta v_{sf(m)}^n \approx [I-\frac{T}{2}(w_{in(m-1/2)}^n×)]C_{b(m-1)}^{n(m-1)}(\Delta v_m+\Delta v_{rot(m)}^{b(m-1)}+\Delta v_{scul(m)}^{b(m-1)}) Δvsf(m)n[I2T(win(m1/2)n×)]Cb(m1)n(m1)(Δvm+Δvrot(m)b(m1)+Δvscul(m)b(m1))
v m n ( m ) = v m − 1 n ( m − 1 ) + Δ v s f ( m ) n + Δ v c o r / g ( m ) n v_m^{n(m)}=v_{m-1}^{n(m-1)}+\Delta v_{sf(m)}^n+\Delta v_{cor/g(m)}^n vmn(m)=vm1n(m1)+Δvsf(m)n+Δvcor/g(m)n
公 式 ( 5 ) 公式(5) 5位置更新算法
p m = p m − 1 + M p v ( m − 1 / 2 ) ( v m − 1 n ( m − 1 ) + v m n ( m ) ) T 2 p_m=p_{m-1}+M_{pv(m-1/2)}(v_{m-1}^{n(m-1)}+v_m^{n(m)})\frac{T}{2} pm=pm1+Mpv(m1/2)(vm1n(m1)+vmn(m))2T
R N h = R n + h ; R M h = R M + h R_{Nh}=R_n+h;R_{Mh}=R_M+h RNh=Rn+h;RMh=RM+h
M p v = [ 0 1 / R M h 0 s e c L / R N h 0 0 0 0 1 ] T M_{pv}=\left[\begin{matrix} 0&1/R_{Mh}&0\\ secL/R_{Nh}&0&0\\ 0&0&1\\ \end{matrix}\right]^T Mpv=0secL/RNh01/RMh00001T
公 式 ( 6 ) 公式(6) 6外推公式
x m − 1 / 2 = x m − 1 + x m − 1 − x m − 2 2 ( x = w i e n , w e n n , v n , g n ) x_{m-1/2}=x_{m-1}+\frac{x_{m-1}-x_{m-2}}{2}(x=w_{ie}^n,w_{en}^n,v^n,g^n) xm1/2=xm1+2xm1xm2(x=wien,wenn,vn,gn)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值