1 常用坐标系的定义
(1)地心惯性坐标系(i 系,inertial frame)
用
o
i
x
i
y
i
z
i
o_ix_iy_iz_i
oixiyizi表示,原点以地球为中心,
原点
o
i
o_i
oi在地球中心
o
i
x
i
o_ix_i
oixi在地球平面内,指向春分点
o
i
z
i
o_iz_i
oizi为地球自转轴,指向北极
o
i
y
i
o_iy_i
oiyi轴在地球平面内,垂直于
o
i
x
i
o_ix_i
oixi和
o
i
z
i
o_iz_i
oizi
(2)地球坐标系(e 系,earth frame)(地心固坐标系)
用
o
e
x
e
y
e
z
e
o_ex_ey_ez_e
oexeyeze表示,原点为地球中心,与地球固连。
o
g
x
g
o_gx_g
ogxg:在赤道平面内指向本初子午线
o
g
y
g
o_gy_g
ogyg:在地球赤道平面内
o
g
z
g
o_gz_g
ogzg:为地球自转轴,指向北极
地球坐标系相对于惯性坐标系的角运动就是地球自转速度,常用:
w
i
e
=
7.2921151467
×
1
0
−
5
r
a
d
/
s
w_{ie}=7.2921151467×10^{-5} rad/s
wie=7.2921151467×10−5rad/s
(3)地理坐标系(g系,geographic frame)
o
g
x
g
y
g
z
g
o_gx_gy_gz_g
ogxgygzg表示“东北天”坐标系作为导航参考坐标系
o
g
o_g
og定义为运载体的中心或重心。
o
g
x
g
o_gx_g
ogxg指向地理东向
o
g
y
g
o_gy_g
ogyg指向地理北向
o
g
z
g
o_gz_g
ogzg垂直于当地旋转椭圆面,指向天向
(4)导航坐标系(n系,mavigation frame)
o
n
x
n
y
n
z
n
o_nx_ny_nz_n
onxnynzn表示,惯导系统求解导航参数所用坐标系
常用当地坐标系作为参考坐标系,常常为地理坐标系
(5)载体坐标系(b系,体系,body frame)
o
b
x
b
y
b
z
b
o_bx_by_bz_b
obxbybzb
o
b
o_b
ob:原点定义为运载体的重心或中心
o
b
x
b
o_bx_b
obxb沿载体面向右
o
b
y
b
o_by_b
obyb沿载体纵轴向前
o
b
z
b
o_bz_b
obzb沿载体立轴向上
2 姿态更新算法
选择东北天坐标系地理坐标系,作为导航参考坐标系,记为n系
则n系的微分方程为:
w
b
n
×
:
坐
标
系
n
下
,
载
体
(
b
系
)
的
角
速
度
,
(
实
际
中
不
能
直
接
获
得
)
w_b^n×:坐标系n下,载体(b系)的角速度,(实际中不能直接获得)
wbn×:坐标系n下,载体(b系)的角速度,(实际中不能直接获得)
C
b
n
:
n
−
>
b
系
的
转
换
矩
阵
C_b^n:n->b系的转换矩阵
Cbn:n−>b系的转换矩阵
C
˙
b
n
=
C
b
n
(
w
b
n
×
)
\dot C_b^n=C_b^n(w_b^n×)
C˙bn=Cbn(wbn×)
由于:
(
w
b
n
×
)
(w_b^n×)
(wbn×)不能直接测得:
w
b
n
n
=
w
i
b
b
+
w
n
i
b
=
w
i
b
b
−
w
i
n
b
w_{bn}^{n}=w_{ib}^b+w^b_{ni}=w_{ib}^b-w^b_{in}
wbnn=wibb+wnib=wibb−winb
w
b
n
n
:
n
系
相
对
于
b
的
角
速
度
,
在
n
系
下
的
转
速
w_{bn}^{n}:n系相对于b的角速度,在n系下的转速
wbnn:n系相对于b的角速度,在n系下的转速
w
i
b
b
:
陀
螺
仪
的
输
出
:
载
体
在
b
系
相
对
于
i
系
的
转
速
,
在
b
系
下
的
表
示
w_{ib}^b:陀螺仪的输出:载体在b系相对于i系的转速,在b系下的表示
wibb:陀螺仪的输出:载体在b系相对于i系的转速,在b系下的表示
C
˙
b
n
=
C
b
n
(
w
b
n
×
)
=
C
b
n
[
(
w
i
b
b
−
w
i
n
b
)
×
]
=
C
b
n
(
w
i
b
b
×
)
−
(
w
i
n
n
×
)
C
b
n
\dot C_b^n=C_b^n(w_b^n×)=C_b^n[(w_{ib}^b-w^b_{in})×]=C_b^n(w_{ib}^b×)-(w_{in}^n×)C_b^n
C˙bn=Cbn(wbn×)=Cbn[(wibb−winb)×]=Cbn(wibb×)−(winn×)Cbn
w
i
n
n
=
w
i
e
n
+
w
e
n
n
w_{in}^n=w_{ie}^n+w_{en}^n
winn=wien+wenn
w
i
e
:
地
球
自
转
速
度
;
L
:
地
理
纬
度
;
h
:
高
度
w_{ie}:地球自转速度;L:地理纬度;h:高度
wie:地球自转速度;L:地理纬度;h:高度
w
i
e
n
=
[
0
w
i
e
c
o
s
L
w
i
e
s
i
n
L
]
T
w_{ie}^n=\left[\begin{matrix} 0&w_{ie}cosL&w_{ie}sinL\\ \end{matrix}\right]^T
wien=[0wiecosLwiesinL]T
w
e
n
n
=
[
−
v
N
R
M
+
h
−
v
E
R
N
+
h
v
E
R
N
+
h
t
a
n
L
]
T
w_{en}^n=\left[\begin{matrix} -\frac{v_N}{R_M+h}&-\frac{v_E}{R_N+h}&\frac{v_E}{R_N+h}tanL\\ \end{matrix}\right]^T
wenn=[−RM+hvN−RN+hvERN+hvEtanL]T
R
M
=
R
e
(
1
−
e
2
)
(
1
−
e
2
s
i
n
2
L
)
3
/
2
(
R
e
:
地
球
长
半
径
,
e
:
椭
圆
偏
心
率
)
R_M=\frac{R_e(1-e^2)}{(1-e^2sin^2L)^{3/2}}(R_e:地球长半径,e:椭圆偏心率)
RM=(1−e2sin2L)3/2Re(1−e2)(Re:地球长半径,e:椭圆偏心率)
R
N
=
R
e
1
−
e
2
s
i
n
2
L
R_N=\frac{R_e}{\sqrt{1-e^2sin^2L}}
RN=1−e2sin2LRe
捷联惯导导数值更新算法
C
b
(
m
)
n
(
m
)
=
C
n
(
m
−
1
)
n
(
m
)
C
b
(
m
−
1
)
n
(
m
−
1
)
C
b
(
m
)
b
(
m
−
1
)
C_{b(m)}^{n(m)}=C_{n(m-1)}^{n(m)}C_{b(m-1)}^{n(m-1)}C_{b(m)}^{b(m-1)}
Cb(m)n(m)=Cn(m−1)n(m)Cb(m−1)n(m−1)Cb(m)b(m−1)
若采用二子样法测得
Δ
θ
1
,
Δ
θ
2
\Delta\theta_1,\Delta\theta_2
Δθ1,Δθ2
得到:
ϕ
i
b
(
m
)
b
=
(
Δ
θ
1
+
Δ
θ
2
)
+
2
3
Δ
θ
1
×
Δ
θ
2
\phi_{ib(m)}^b=(\Delta\theta_1+\Delta\theta_2)+\frac{2}{3}\Delta\theta_1×\Delta\theta_2
ϕib(m)b=(Δθ1+Δθ2)+32Δθ1×Δθ2
C
b
(
m
)
b
(
m
−
1
)
=
M
R
V
(
ϕ
i
b
(
m
)
b
)
=
I
+
s
i
n
∣
ϕ
i
b
(
m
)
b
∣
∣
ϕ
i
b
(
m
)
b
∣
(
ϕ
i
b
(
m
)
b
×
)
+
1
−
c
o
s
∣
ϕ
i
b
(
m
)
b
∣
∣
ϕ
i
b
(
m
)
b
∣
2
(
ϕ
i
b
(
m
)
b
×
)
2
C_{b(m)}^{b(m-1)}=M_{RV}(\phi_{ib(m)}^b)=I+\frac{sin|\phi_{ib(m)}^b|}{|\phi_{ib(m)}^b|}(\phi_{ib(m)}^b\times)+\frac{1-cos|\phi_{ib(m)}^b|}{|\phi_{ib(m)}^b|^2}(\phi_{ib(m)}^b\times)^2
Cb(m)b(m−1)=MRV(ϕib(m)b)=I+∣ϕib(m)b∣sin∣ϕib(m)b∣(ϕib(m)b×)+∣ϕib(m)b∣21−cos∣ϕib(m)b∣(ϕib(m)b×)2
C
n
(
m
−
1
)
n
(
m
)
=
M
R
V
T
(
ϕ
i
n
(
m
)
n
)
≈
M
R
V
T
(
T
w
i
n
(
m
)
n
)
(
w
i
n
(
m
)
n
)
由
速
度
和
位
置
引
起
这
里
我
们
认
为
是
常
量
)
C_{n(m-1)}^{n(m)}=M^T_{RV}(\phi_{in(m)}^n)\approx M_{RV}^T(Tw_{in(m)}^n)(w_{in(m)}^n)由速度和位置引起这里我们认为是常量)
Cn(m−1)n(m)=MRVT(ϕin(m)n)≈MRVT(Twin(m)n)(win(m)n)由速度和位置引起这里我们认为是常量)
3 比力方程
比力:加速度计测量的载体相对惯性空间的绝对加速度和引力加速度之差
运载体在导航系下的惯导结算方程:
运载体在地球表面运动时比力方程,可达
1
0
−
7
g
10^{-7}g
10−7g对于惯性级导航可忽略。
g
n
:
重
力
加
速
度
g^n:重力加速度
gn:重力加速度
f
s
f
b
:
加
速
度
计
测
量
的
比
力
f_{sf}^b:加速度计测量的比力
fsfb:加速度计测量的比力
w
e
n
n
×
v
e
n
n
:
由
载
体
引
起
的
对
地
向
心
加
速
度
w_{en}^n×v_{en}^n:由载体引起的对地向心加速度
wenn×venn:由载体引起的对地向心加速度
2
w
i
e
n
×
v
e
n
n
:
由
载
体
和
地
球
自
转
引
起
的
哥
氏
加
速
度
2w_{ie}^n×v_{en}^n:由载体和地球自转引起的哥氏加速度
2wien×venn:由载体和地球自转引起的哥氏加速度
v
˙
e
n
n
:
运
载
体
在
导
航
系
下
的
运
动
加
速
度
\dot v_{en}^n:运载体在导航系下的运动加速度
v˙enn:运载体在导航系下的运动加速度
C
b
n
:
b
系
到
n
系
的
转
换
矩
阵
C_b^n:b系到n系的转换矩阵
Cbn:b系到n系的转换矩阵
v
˙
e
n
n
=
C
b
n
f
s
f
b
−
(
2
w
i
e
n
+
w
e
n
n
)
×
v
e
n
n
+
g
n
\dot v_{en}^n=C_b^nf_{sf}^b-(2w_{ie}^n+w_{en}^n)×v_{en}^n+g^n
v˙enn=Cbnfsfb−(2wien+wenn)×venn+gn
4 速度更新算法
利用比力方程在
[
t
m
−
1
,
t
m
]
[t_{m-1},t_m]
[tm−1,tm]内积分,求得速度的递推更新公式为:
v
m
n
(
m
)
:
t
m
时
刻
惯
导
速
度
v_m^{n(m)}:t_m时刻惯导速度
vmn(m):tm时刻惯导速度
v
m
−
1
n
(
m
−
1
)
:
t
m
−
1
时
刻
惯
导
速
度
v_{m-1}^{n(m-1)}:t_{m-1}时刻惯导速度
vm−1n(m−1):tm−1时刻惯导速度
Δ
v
s
f
(
m
)
n
:
导
航
比
力
速
度
增
量
\Delta v_{sf(m)}^n:导航比力速度增量
Δvsf(m)n:导航比力速度增量
Δ
v
c
o
r
/
g
(
m
)
n
:
有
害
加
速
度
增
量
\Delta v_{cor/g(m)}^n:有害加速度增量
Δvcor/g(m)n:有害加速度增量
v
m
n
(
m
)
=
v
m
−
1
n
(
m
−
1
)
+
Δ
v
s
f
(
m
)
n
+
Δ
v
c
o
r
/
g
(
m
)
n
v_m^{n(m)}=v_{m-1}^{n(m-1)}+\Delta v_{sf(m)}^n+\Delta v_{cor/g(m)}^n
vmn(m)=vm−1n(m−1)+Δvsf(m)n+Δvcor/g(m)n
Δ
v
s
f
(
m
)
n
=
∫
t
m
−
1
t
m
C
b
n
(
t
)
f
s
f
b
(
t
)
d
t
\Delta v_{sf(m)}^n=\int_{t_{m-1}}^{t_m}C_b^n(t)f_{sf}^b(t)dt
Δvsf(m)n=∫tm−1tmCbn(t)fsfb(t)dt
Δ
v
c
o
r
/
g
(
m
)
n
=
∫
t
m
−
1
t
m
{
−
[
2
w
i
e
n
(
t
)
+
w
e
n
n
(
t
)
]
×
v
n
(
t
)
+
g
n
(
t
)
}
d
t
\Delta v_{cor/g(m)}^n=\int_{t_{m-1}}^{t_m}\{-[2w_{ie}^n(t)+w_{en}^n(t)]×v^n(t)+g^n(t)\}dt
Δvcor/g(m)n=∫tm−1tm{−[2wien(t)+wenn(t)]×vn(t)+gn(t)}dt
Δ
v
c
o
r
/
g
(
m
)
n
\Delta v_{cor/g(m)}^n
Δvcor/g(m)n的计算():
Δ
v
c
o
r
/
g
(
m
)
n
≈
{
−
[
2
w
i
e
(
m
−
1
/
2
)
n
+
w
e
n
(
m
−
1
/
2
)
n
]
×
v
m
−
1
/
2
n
+
g
m
−
1
/
2
n
}
T
\Delta v_{cor/g(m)}^n\approx \{ -[2w_{ie(m-1/2)}^n+w_{en(m-1/2)}^n]×v_{m-1/2}^{n}+g_{m-1/2}^{n}\}T
Δvcor/g(m)n≈{−[2wie(m−1/2)n+wen(m−1/2)n]×vm−1/2n+gm−1/2n}T
使用外推法计算:
x
m
−
1
/
2
=
x
m
−
1
+
x
m
−
1
−
x
m
−
2
2
(
x
=
w
i
e
n
,
w
e
n
n
,
v
n
,
g
n
)
x_{m-1/2}=x_{m-1}+\frac{x_{m-1}-x_{m-2}}{2}(x=w_{ie}^n,w_{en}^n,v^n,g^n)
xm−1/2=xm−1+2xm−1−xm−2(x=wien,wenn,vn,gn)
Δ
v
s
f
(
m
)
n
\Delta v_{sf(m)}^n
Δvsf(m)n的计算():
θ
i
b
b
(
t
,
t
m
−
1
)
:
角
增
量
\theta^{b}_{ib}(t,t_{m-1}):角增量
θibb(t,tm−1):角增量
Δ
v
s
f
(
m
)
n
≈
C
b
(
m
−
1
)
n
(
m
−
1
)
∫
t
m
−
1
t
m
f
s
f
b
(
t
)
d
t
−
∫
t
m
−
1
t
m
θ
i
n
n
(
t
,
t
m
−
1
)
×
[
C
b
(
m
−
1
)
n
(
m
−
1
)
f
s
f
b
(
t
)
]
d
t
+
C
b
(
m
−
1
)
n
(
m
−
1
)
∫
t
m
−
1
t
m
θ
i
b
b
(
t
,
t
m
−
1
)
f
s
f
b
(
t
)
d
t
\Delta v_{sf(m)}^n \approx C_{b(m-1)}^{n{(m-1)}}\int_{t_{m-1}}^{t_m}f_{sf}^b(t)dt-\int_{t_{m-1}}^{t_m}\theta_{in}^n(t,t_{m-1})×[C_{b(m-1)}^{n(m-1)}f_{sf}^b(t)]dt+C_{b(m-1)}^{n{(m-1)}}\int_{t_{m-1}}^{t_m}\theta^{b}_{ib}(t,t_{m-1})f_{sf}^b(t)dt
Δvsf(m)n≈Cb(m−1)n(m−1)∫tm−1tmfsfb(t)dt−∫tm−1tmθinn(t,tm−1)×[Cb(m−1)n(m−1)fsfb(t)]dt+Cb(m−1)n(m−1)∫tm−1tmθibb(t,tm−1)fsfb(t)dt
∫
t
m
−
1
t
m
θ
i
b
b
(
t
,
t
m
−
1
)
f
s
f
b
(
t
)
d
t
=
Δ
v
r
o
t
(
m
)
b
(
m
−
1
)
+
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
\int_{t_{m-1}}^{t_m}\theta^{b}_{ib}(t,t_{m-1})f_{sf}^b(t)dt=\Delta v^{b(m-1)}_{rot(m)}+\Delta v^{b(m-1)}_{scul(m)}
∫tm−1tmθibb(t,tm−1)fsfb(t)dt=Δvrot(m)b(m−1)+Δvscul(m)b(m−1):
{
Δ
v
r
o
t
(
m
)
b
(
m
−
1
)
=
1
2
Δ
θ
m
×
Δ
v
m
速
度
的
旋
转
误
差
补
偿
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
=
1
2
∫
t
m
−
1
t
m
θ
i
b
b
(
t
,
t
m
−
1
)
×
f
s
f
b
(
t
)
+
v
s
f
b
(
t
,
t
m
−
1
)
×
w
i
b
b
(
t
)
d
t
划
桨
误
差
补
偿
Δ
θ
m
=
∫
t
m
−
1
m
w
i
b
b
(
t
)
d
t
陀
螺
仪
采
样
角
增
量
Δ
v
m
=
∫
t
m
−
1
t
m
f
s
f
b
(
t
)
d
t
加
速
计
采
样
比
力
速
度
增
量
\begin{cases} \Delta v^{b(m-1)}_{rot(m)}=\frac{1}{2} \Delta \theta_m×\Delta v_m&速度的旋转误差补偿 \\ \Delta v^{b(m-1)}_{scul(m)}=\frac{1}{2}\int_{t_{m-1}}^{t_m}\theta^{b}_{ib}(t,t_{m-1})×f_{sf}^b(t)+v_{sf}^b(t,t_{m-1})×w_{ib}^b(t)dt&划桨误差补偿\\ \Delta \theta_m=\int_{t_{m-1}}^mw_{ib}^b(t)dt&陀螺仪采样角增量 \\ \Delta v_m=\int_{t_{m-1}}^{t_m}f_{sf}^b(t)dt&加速计采样比力速度增量\\ \end{cases}
⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧Δvrot(m)b(m−1)=21Δθm×ΔvmΔvscul(m)b(m−1)=21∫tm−1tmθibb(t,tm−1)×fsfb(t)+vsfb(t,tm−1)×wibb(t)dtΔθm=∫tm−1mwibb(t)dtΔvm=∫tm−1tmfsfb(t)dt速度的旋转误差补偿划桨误差补偿陀螺仪采样角增量加速计采样比力速度增量
假设陀螺仪角速度和加速度比力测量输出均为线性模型
即:
{
w
i
b
b
(
t
)
=
a
+
2
b
(
t
−
t
m
−
1
)
陀
螺
仪
采
样
角
增
量
f
s
f
b
(
t
)
=
A
+
2
B
(
t
−
t
m
−
1
)
加
速
计
采
样
比
力
速
度
增
量
\begin{cases} w_{ib}^b(t)=a+2b(t-t_{m-1})&陀螺仪采样角增量 \\ f_{sf}^b(t)=A+2B(t-t_{m-1})&加速计采样比力速度增量\\ \end{cases}
{wibb(t)=a+2b(t−tm−1)fsfb(t)=A+2B(t−tm−1)陀螺仪采样角增量加速计采样比力速度增量
得到
{
Δ
θ
m
=
∫
t
m
−
1
t
m
w
i
b
b
(
t
)
d
t
=
a
(
t
−
t
m
−
1
)
+
b
(
t
−
t
m
−
1
)
2
陀
螺
仪
采
样
角
增
量
Δ
v
m
=
∫
t
m
−
1
t
m
f
s
f
b
(
t
)
d
t
=
A
(
t
−
t
m
−
1
)
+
B
(
t
−
t
m
−
1
)
2
加
速
计
采
样
比
力
速
度
增
量
\begin{cases} \Delta \theta_m=\int_{t_{m-1}}^{t_m}w_{ib}^b(t)dt=a(t-t_{m-1})+b(t-t_{m-1})^2&陀螺仪采样角增量 \\ \Delta v_m=\int_{t_{m-1}}^{t_m}f_{sf}^b(t)dt=A(t-t_{m-1})+B(t-t_{m-1})^2&加速计采样比力速度增量\\ \end{cases}
{Δθm=∫tm−1tmwibb(t)dt=a(t−tm−1)+b(t−tm−1)2Δvm=∫tm−1tmfsfb(t)dt=A(t−tm−1)+B(t−tm−1)2陀螺仪采样角增量加速计采样比力速度增量
可以得到:
{
Δ
v
r
o
t
(
m
)
b
(
m
−
1
)
=
1
2
Δ
θ
m
×
Δ
v
m
速
度
的
旋
转
误
差
补
偿
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
=
(
a
×
B
+
A
×
b
)
(
t
m
−
t
m
−
1
)
3
6
划
桨
误
差
补
偿
\begin{cases} \Delta v^{b(m-1)}_{rot(m)}=\frac{1}{2} \Delta \theta_m×\Delta v_m&速度的旋转误差补偿 \\ \Delta v^{b(m-1)}_{scul(m)}=(a×B+A×b)\frac{(t_m-t_{m-1})^3}{6}&划桨误差补偿\\ \end{cases}
{Δvrot(m)b(m−1)=21Δθm×ΔvmΔvscul(m)b(m−1)=(a×B+A×b)6(tm−tm−1)3速度的旋转误差补偿划桨误差补偿
若采用2子样法,在
[
t
m
−
1
,
t
m
]
[t_{m-1},t_m]
[tm−1,tm]时间两次等间隔采样数据为:
Δ
θ
m
1
,
Δ
θ
m
2
,
Δ
v
m
1
,
Δ
v
m
2
,
h
=
T
2
=
t
m
−
t
m
−
1
2
\Delta\theta_{m1},\Delta\theta_{m2},\Delta v_{m1},\Delta v_{m2},h=\frac{T}{2}=\frac{t_m-t_{m-1}}{2}
Δθm1,Δθm2,Δvm1,Δvm2,h=2T=2tm−tm−1
可以得到:
a
=
3
Δ
θ
m
1
−
Δ
θ
m
2
2
h
,
b
=
θ
m
2
−
θ
m
1
2
h
2
a=\frac{3\Delta\theta_{m1}-\Delta\theta_{m2}}{2h},b=\frac{\theta_{m2}-\theta_{m1}}{2h^2}
a=2h3Δθm1−Δθm2,b=2h2θm2−θm1
A
=
3
Δ
v
m
1
−
Δ
v
m
2
2
h
,
B
=
v
m
2
−
v
m
1
2
h
2
A=\frac{3\Delta v_{m1}-\Delta v_{m2}}{2h},B=\frac{v_{m2}-v_{m1}}{2h^2}
A=2h3Δvm1−Δvm2,B=2h2vm2−vm1
{
Δ
v
r
o
t
(
m
)
b
(
m
−
1
)
=
1
2
Δ
θ
m
×
Δ
v
m
速
度
的
旋
转
误
差
补
偿
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
=
2
3
(
Δ
θ
m
1
×
Δ
v
m
2
+
Δ
v
m
1
×
Δ
θ
m
2
)
划
桨
误
差
补
偿
\begin{cases} \Delta v^{b(m-1)}_{rot(m)}=\frac{1}{2} \Delta \theta_m×\Delta v_m&速度的旋转误差补偿 \\ \Delta v^{b(m-1)}_{scul(m)}=\frac{2}{3}( \Delta \theta_{m1}×\Delta v_{m2}+\Delta v_{m1}×\Delta \theta_{m2})&划桨误差补偿\\ \end{cases}
{Δvrot(m)b(m−1)=21Δθm×ΔvmΔvscul(m)b(m−1)=32(Δθm1×Δvm2+Δvm1×Δθm2)速度的旋转误差补偿划桨误差补偿
∫
t
m
−
1
t
m
θ
i
n
n
(
t
,
t
m
−
1
)
×
[
C
b
(
m
−
1
)
n
(
m
−
1
)
f
s
f
b
(
t
)
]
d
t
≈
T
6
w
i
n
(
m
−
1
/
2
)
n
×
[
C
b
(
m
−
1
)
n
(
m
−
1
)
(
Δ
v
m
1
+
Δ
v
m
2
)
]
\int_{t_{m-1}}^{t_m}\theta_{in}^n(t,t_{m-1})×[C_{b(m-1)}^{n(m-1)}f_{sf}^b(t)]dt\approx \frac{T}{6}w_{in(m-1/2)}^n×[C_{b(m-1)}^{n(m-1)}(\Delta v_{m1}+\Delta v_{m2})]
∫tm−1tmθinn(t,tm−1)×[Cb(m−1)n(m−1)fsfb(t)]dt≈6Twin(m−1/2)n×[Cb(m−1)n(m−1)(Δvm1+Δvm2)]
最后得到:
Δ
v
s
f
(
m
)
n
=
C
b
(
m
−
1
)
n
(
m
−
1
)
Δ
v
m
−
T
6
w
i
n
(
m
−
1
/
2
)
n
×
[
C
b
(
m
−
1
)
n
(
m
−
1
)
(
Δ
v
m
1
+
5
Δ
v
m
2
)
]
+
C
b
(
m
−
1
)
n
(
m
−
1
)
(
Δ
v
r
o
t
(
m
)
b
(
m
−
1
)
+
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
)
\Delta v_{sf(m)}^n=C_{b(m-1)}^{n(m-1)}\Delta v_m-\frac{T}{6}w_{in(m-1/2)}^n×[C_{b(m-1)}^{n(m-1)}(\Delta v_{m1}+5\Delta v_{m2})]+C_{b(m-1)}^{n(m-1)}(\Delta v_{rot(m)}^{b(m-1)}+\Delta v_{scul(m)}^{b(m-1)})
Δvsf(m)n=Cb(m−1)n(m−1)Δvm−6Twin(m−1/2)n×[Cb(m−1)n(m−1)(Δvm1+5Δvm2)]+Cb(m−1)n(m−1)(Δvrot(m)b(m−1)+Δvscul(m)b(m−1))
若在
[
t
m
−
1
,
t
m
]
[t_{m-1},t_m]
[tm−1,tm]内的比力变化不大,可以近似看作
Δ
v
m
1
≈
Δ
v
m
2
≈
1
2
Δ
v
m
\Delta v_{m1} \approx \Delta v_{m2} \approx \frac{1}{2}\Delta v_m
Δvm1≈Δvm2≈21Δvm
Δ
v
s
f
(
m
)
n
≈
[
I
−
T
2
(
w
i
n
(
m
−
1
/
2
)
n
×
)
]
C
b
(
m
−
1
)
n
(
m
−
1
)
(
Δ
v
m
+
Δ
v
r
o
t
(
m
)
b
(
m
−
1
)
+
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
)
\Delta v_{sf(m)}^n \approx [I-\frac{T}{2}(w_{in(m-1/2)}^n×)]C_{b(m-1)}^{n(m-1)}(\Delta v_m+\Delta v_{rot(m)}^{b(m-1)}+\Delta v_{scul(m)}^{b(m-1)})
Δvsf(m)n≈[I−2T(win(m−1/2)n×)]Cb(m−1)n(m−1)(Δvm+Δvrot(m)b(m−1)+Δvscul(m)b(m−1))
5 划桨误差补偿
(1)使用二子样法,测到划桨误差在多项式条件下的误差补偿如下(已在上方求解):
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
=
2
3
(
Δ
θ
m
1
×
Δ
v
m
2
+
Δ
v
m
1
×
Δ
θ
m
2
)
\Delta v^{b(m-1)}_{scul(m)}=\frac{2}{3}( \Delta \theta_{m1}×\Delta v_{m2}+\Delta v_{m1}×\Delta \theta_{m2})
Δvscul(m)b(m−1)=32(Δθm1×Δvm2+Δvm1×Δθm2)
(2)理想条件下的划桨误差补偿
划桨运动:假设坐标系(b系:物体坐标系):绕其x轴做角振动,绕其y轴做线振动,两者振动频率相同为
Ω
\Omega
Ω,单相差
9
0
。
90^。
90。
则其角度速度和比例分别为:
w
i
b
b
(
t
)
=
[
a
Ω
t
s
i
n
Ω
t
0
0
]
w_{ib}^b(t)=\left[\begin{matrix} a\Omega tsin\Omega t&0&0\\ \end{matrix}\right]
wibb(t)=[aΩtsinΩt00]
f
s
f
b
(
t
)
=
[
0
β
Ω
c
o
s
Ω
t
0
]
f_{sf}^b(t)=\left[\begin{matrix} 0&\beta\Omega cos\Omega t&0\\ \end{matrix}\right]
fsfb(t)=[0βΩcosΩt0]
在时间
[
t
m
−
1
,
t
]
[t_{m-1},t]
[tm−1,t]内的角增量和比力增量为:
θ
i
b
b
(
t
m
−
1
,
t
)
=
∫
t
m
−
1
t
w
i
b
b
(
τ
)
d
τ
=
[
−
a
(
sin
Ω
t
−
cos
Ω
t
m
−
1
)
0
0
]
T
\theta_{ib}^b(t_{m-1},t)=\int_{t_{m-1}}^{t}w_{ib}^b(\tau)d\tau=\left[\begin{matrix} -a(\sin\Omega t-\cos\Omega t_{m-1})&0&0\\ \end{matrix}\right]^T
θibb(tm−1,t)=∫tm−1twibb(τ)dτ=[−a(sinΩt−cosΩtm−1)00]T
v
s
f
b
(
t
m
−
1
,
t
m
)
=
∫
t
m
−
1
t
f
s
f
b
(
τ
)
d
τ
=
[
0
β
(
sin
Ω
t
−
s
i
n
Ω
t
t
m
−
1
)
0
]
T
v_{sf}^b(t_{m-1},t_m)=\int_{t_{m-1}}^{t}f_{sf}^b(\tau)d\tau=\left[\begin{matrix} 0&\beta(\sin\Omega t-sin\Omega t_{t_{m-1}})&0\\ \end{matrix}\right]^T
vsfb(tm−1,tm)=∫tm−1tfsfb(τ)dτ=[0β(sinΩt−sinΩttm−1)0]T
带入:
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
=
1
2
∫
t
m
−
1
t
m
θ
i
b
b
(
t
,
t
m
−
1
)
×
f
s
f
b
(
t
)
+
v
s
f
b
(
t
,
t
m
−
1
)
×
w
i
b
b
(
t
)
d
t
\Delta v^{b(m-1)}_{scul(m)}=\frac{1}{2}\int_{t_{m-1}}^{t_m}\theta^{b}_{ib}(t,t_{m-1})×f_{sf}^b(t)+v_{sf}^b(t,t_{m-1})×w_{ib}^b(t)dt
Δvscul(m)b(m−1)=21∫tm−1tmθibb(t,tm−1)×fsfb(t)+vsfb(t,tm−1)×wibb(t)dt
=
1
2
∫
t
m
−
1
t
m
[
θ
i
b
b
(
t
,
t
m
)
+
v
s
f
b
(
t
,
t
m
−
1
)
]
×
[
f
s
f
b
(
t
)
+
w
i
b
b
(
t
)
]
d
t
=\frac{1}{2}\int_{t_{m-1}}^{t_m}[ \theta_{ib}^b(t,t_m)+v_{sf}^b(t,t_{m-1})]×[f_{sf}^b(t)+w_{ib}^b(t)]dt
=21∫tm−1tm[θibb(t,tm)+vsfb(t,tm−1)]×[fsfb(t)+wibb(t)]dt
划桨误差与圆锥误差的不可交换式形式上一致,因此将圆锥误差的补偿算法应用于划桨误差算法,圆锥误差求解,
求得划桨误差的补偿公式如下:
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
=
∑
i
=
1
N
−
1
k
N
−
i
Δ
θ
m
i
×
Δ
v
m
N
+
∑
i
=
1
N
−
1
k
N
−
i
Δ
v
m
i
×
Δ
θ
m
N
\Delta v^{b(m-1)}_{scul(m)}=\sum_{i=1}^{N-1}k_{N-i}\Delta\theta_{mi}\times\Delta v_{mN}+\sum_{i=1}^{N-1}k_{N-i}\Delta v_{mi}\times\Delta \theta_{mN}
Δvscul(m)b(m−1)=i=1∑N−1kN−iΔθmi×ΔvmN+i=1∑N−1kN−iΔvmi×ΔθmN
剩余误差为(未补偿的高阶误差项):
ρ
n
与
圆
锥
误
差
补
偿
ρ
n
相
同
\rho_n与圆锥误差补偿\rho_n相同
ρn与圆锥误差补偿ρn相同
▽
n
=
1
T
[
Δ
v
‾
s
c
u
l
(
m
)
b
(
m
−
1
)
−
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
]
z
=
ρ
n
α
β
Ω
(
Ω
T
)
2
N
+
1
T
(
N
≥
1
)
\bigtriangledown n=\frac{1}{T}[\Delta \overline v^{b(m-1)}_{scul(m)}-\Delta v^{b(m-1)}_{scul(m)}]_z=\rho_n\frac{\alpha\beta\Omega(\Omega T)^{2N+1}}{T}(N\geq1)
▽n=T1[Δvscul(m)b(m−1)−Δvscul(m)b(m−1)]z=ρnTαβΩ(ΩT)2N+1(N≥1)
6 位置更新算法
公
式
(
1
)
公式(1)
公式(1):计算等效旋转矢量
ϕ
i
b
(
m
)
b
=
(
Δ
θ
1
+
Δ
θ
2
)
+
2
3
Δ
θ
1
×
Δ
θ
2
\phi_{ib(m)}^b=(\Delta\theta_1+\Delta\theta_2)+\frac{2}{3}\Delta\theta_1×\Delta\theta_2
ϕib(m)b=(Δθ1+Δθ2)+32Δθ1×Δθ2
公
式
(
2
)
公式(2)
公式(2):计算误差补偿值
Δ
v
r
o
t
(
m
)
b
(
m
−
1
)
=
1
2
Δ
θ
m
×
Δ
v
m
\Delta v^{b(m-1)}_{rot(m)}=\frac{1}{2} \Delta \theta_m×\Delta v_m
Δvrot(m)b(m−1)=21Δθm×Δvm
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
=
2
3
(
Δ
θ
m
1
×
Δ
v
m
2
+
Δ
v
m
1
×
Δ
θ
m
2
)
\Delta v^{b(m-1)}_{scul(m)}=\frac{2}{3}( \Delta \theta_{m1}×\Delta v_{m2}+\Delta v_{m1}×\Delta \theta_{m2})
Δvscul(m)b(m−1)=32(Δθm1×Δvm2+Δvm1×Δθm2)
公
式
(
3
)
公式(3)
公式(3):捷联惯导导数值更新算法
C
b
(
m
)
n
(
m
)
=
C
n
(
m
−
1
)
n
(
m
)
C
b
(
m
−
1
)
n
(
m
−
1
)
C
b
(
m
)
b
(
m
−
1
)
C_{b(m)}^{n(m)}=C_{n(m-1)}^{n(m)}C_{b(m-1)}^{n(m-1)}C_{b(m)}^{b(m-1)}
Cb(m)n(m)=Cn(m−1)n(m)Cb(m−1)n(m−1)Cb(m)b(m−1)
公
式
(
4
)
公式(4)
公式(4)速度更新算法
Δ
v
s
f
(
m
)
n
≈
[
I
−
T
2
(
w
i
n
(
m
−
1
/
2
)
n
×
)
]
C
b
(
m
−
1
)
n
(
m
−
1
)
(
Δ
v
m
+
Δ
v
r
o
t
(
m
)
b
(
m
−
1
)
+
Δ
v
s
c
u
l
(
m
)
b
(
m
−
1
)
)
\Delta v_{sf(m)}^n \approx [I-\frac{T}{2}(w_{in(m-1/2)}^n×)]C_{b(m-1)}^{n(m-1)}(\Delta v_m+\Delta v_{rot(m)}^{b(m-1)}+\Delta v_{scul(m)}^{b(m-1)})
Δvsf(m)n≈[I−2T(win(m−1/2)n×)]Cb(m−1)n(m−1)(Δvm+Δvrot(m)b(m−1)+Δvscul(m)b(m−1))
v
m
n
(
m
)
=
v
m
−
1
n
(
m
−
1
)
+
Δ
v
s
f
(
m
)
n
+
Δ
v
c
o
r
/
g
(
m
)
n
v_m^{n(m)}=v_{m-1}^{n(m-1)}+\Delta v_{sf(m)}^n+\Delta v_{cor/g(m)}^n
vmn(m)=vm−1n(m−1)+Δvsf(m)n+Δvcor/g(m)n
公
式
(
5
)
公式(5)
公式(5)位置更新算法
p
m
=
p
m
−
1
+
M
p
v
(
m
−
1
/
2
)
(
v
m
−
1
n
(
m
−
1
)
+
v
m
n
(
m
)
)
T
2
p_m=p_{m-1}+M_{pv(m-1/2)}(v_{m-1}^{n(m-1)}+v_m^{n(m)})\frac{T}{2}
pm=pm−1+Mpv(m−1/2)(vm−1n(m−1)+vmn(m))2T
R
N
h
=
R
n
+
h
;
R
M
h
=
R
M
+
h
R_{Nh}=R_n+h;R_{Mh}=R_M+h
RNh=Rn+h;RMh=RM+h
M
p
v
=
[
0
1
/
R
M
h
0
s
e
c
L
/
R
N
h
0
0
0
0
1
]
T
M_{pv}=\left[\begin{matrix} 0&1/R_{Mh}&0\\ secL/R_{Nh}&0&0\\ 0&0&1\\ \end{matrix}\right]^T
Mpv=⎣⎡0secL/RNh01/RMh00001⎦⎤T
公
式
(
6
)
公式(6)
公式(6)外推公式
x
m
−
1
/
2
=
x
m
−
1
+
x
m
−
1
−
x
m
−
2
2
(
x
=
w
i
e
n
,
w
e
n
n
,
v
n
,
g
n
)
x_{m-1/2}=x_{m-1}+\frac{x_{m-1}-x_{m-2}}{2}(x=w_{ie}^n,w_{en}^n,v^n,g^n)
xm−1/2=xm−1+2xm−1−xm−2(x=wien,wenn,vn,gn)