原理作用
只有准确的获得系统的结构参数和噪声统计特性参数,才能获得最优值的状态估计,实际中往往是不够准确的
可以使用量测输出(输出隐含了系统模型的某些信息)对系统系统模型进行重新估计。
量测噪声方差阵自适应算法
系统状态空间
X k : n 维 状 态 向 量 X_k:n维状态向量 Xk:n维状态向量
Z k : m 维 测 量 向 量 Z_k:m维测量向量 Zk:m维测量向量
Φ k / k − 1 : 已 知 的 系 统 结 构 参 数 \Phi_{k/k-1}:已知的系统结构参数 Φk/k−1:已知的系统结构参数
Γ k / k − 1 : 已 知 的 系 统 结 构 参 数 , 分 别 为 n × l 阶 系 统 分 配 噪 声 \Gamma_{k/k-1}:已知的系统结构参数,分别为n×l阶系统分配噪声 Γk/k−1:已知的系统结构参数,分别为n×l阶系统分配噪声
H k : 已 知 的 系 统 结 构 参 数 , 分 别 为 m × n 阶 测 量 矩 阵 H_k:已知的系统结构参数,分别为m×n阶测量矩阵 Hk:已知的系统结构参数,分别为m×n阶测量矩阵
V k : m 维 测 量 噪 声 , 高 斯 白 噪 声 , 服 从 正 太 分 布 V_k:m维测量噪声,高斯白噪声,服从正太分布 Vk:m维测量噪声,高斯白噪声,服从正太分布
W k − 1 : m 维 系 统 噪 声 向 量 , 高 斯 白 噪 声 , 服 从 正 太 分 布 W_{k-1}:m维系统噪声向量,高斯白噪声,服从正太分布 Wk−1:m维系统噪声向量,高斯白噪声,服从正太分布
V k 与 W k − 1 互 不 相 关 V_k与W_{k-1}互不相关 Vk与Wk−1互不相关
{ X k = Φ k / k − 1 X k − 1 + Γ k / k − 1 W k − 1 Z k = H k X k + V k s t . { E [ W k ] = 0 , E [ W k W j T ] = Q k δ k j Q k ≥ 0 E [ V k ] = 0 , E [ V k V j T ] = R k δ k j , E [ W k V j T ] = 0 R ≥ 0 \begin{cases} X_k=\Phi_{k/k-1}X_{k-1}+\Gamma_{k/k-1}W_{k-1}\\ Z_k=H_kX_k+V_k\\ \end{cases} \\ st. \\ \begin{cases} E[W_k]=0,E[W_kW_j^T]=Q_k\delta_{kj} &Q_k \geq 0\\ E[V_k]=0,E[V_kV_j^T]=R_k\delta_{kj},E[W_kV_j^T]=0&R\geq 0\\ \end{cases} {
Xk=Φk/k−1Xk−1+Γk/k−1Wk−1Zk=HkXk+Vkst.{
E[Wk]=0,E[WkWjT]=QkδkjE[Vk]=0,E[VkVjT]=Rkδkj,E[WkVjT]=0Qk≥0R≥0