捷联惯导系统学习6.4(奇异值分解滤波 )

奇异值(singular Value Decomposition,SVD)分解滤波

将三角阵的求逆变为对角阵(plotter平方根滤波)的求逆,大大降低计算量
<奇异值分解:>
A : 当 为 n 阶 实 对 称 矩 阵 , 可 分 解 为 : A:当为n阶实对称矩阵,可分解为: A:n,
Q Q T = I , Q 为 标 准 正 交 阵 , Q 的 列 坐 标 为 特 征 向 量 QQ^T=I,Q为标准正交阵,Q的列坐标为特征向量 QQT=I,QQ
Γ : 为 特 征 值 构 成 的 对 角 矩 阵 \Gamma:为特征值构成的对角矩阵 Γ:
A = Q Γ Q T ( 特 征 值 分 解 E V D ) Γ = [ λ 1 . . . . . . . . . . . . . λ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . λ n ] A=Q\Gamma Q^T(特征值分解EVD) \\ \Gamma=\left[\begin{matrix} \lambda_1&...&...&....\\...&\lambda_2&...&....\\...&...&....&....\\...&...&...&\lambda_n\\ \end{matrix}\right] A=QΓQT(EVD)Γ=λ1............λ2...............................λn
A : 当 为 n 阶 实 矩 阵 , 可 分 解 为 : A:当为n阶实矩阵,可分解为: A:n
U U T = I , U 为 单 位 正 交 阵 , 左 奇 异 矩 阵 , U ∈ R m × m UU^T=I,U为单位正交阵,左奇异矩阵,U\in R_{m×m} UUT=I,U,URm×m
V V T = I , V 为 单 位 正 交 阵 , 右 奇 异 矩 阵 , V ∈ R n × n VV^T=I,V为单位正交阵,右奇异矩阵,V\in R_{n×n} VVT=I,V,VRn×n
Σ : 奇 异 值 , 除 了 对 角 元 素 , 其 他 元 素 为 0 , Σ ∈ R m × n \Sigma:奇异值,除了对角元素,其他元素为0,\Sigma \in R_{m×n} Σ:0,ΣRm×n
A = U Σ V T Σ = [ σ 1 0 . . . 0 0 0 σ 2 . . . 0 0 0 0 . . . 0 0 0 0 . . . σ n 0 ] m × n A=U\Sigma V^T \\ \Sigma=\left[\begin{matrix} \sigma_1&0&...&0&0\\0&\sigma_2&...&0&0\\ 0&0&...&0&0\\0&0&...&\sigma_n&0 \end{matrix}\right]_{m×n} A=UΣVTΣ=σ10000σ200............000σn0000m×n
求解:
A A T = U Σ V T V Σ T U T = U Σ Σ T U T AA^T=U\Sigma V^TV\Sigma^TU^T=U\Sigma\Sigma^TU^T AAT=UΣVTVΣTUT=UΣΣTUT
已知kalman滤波均方误差阵更新公式如下:
P k / k − 1 = Φ k / k − 1 P k − 1 Φ k / k − 1 T + Γ k − 1 Q k − 1 Γ k − 1 T P k − 1 = P k / k − 1 − 1 + H k T R k − 1 H k P_{k/k-1}=\Phi_{k/k-1}P_{k-1}\Phi^T_{k/k-1}+\Gamma_{k-1}Q_{k-1}\Gamma_{k-1}^T \\ P_k^{-1}=P_{k/k-1}^{-1}+H_k^TR_k^{-1}H_k Pk/k1=Φk/k1Pk1Φk/k1T+Γk1Qk1Γk1TPk1=Pk/k11+HkTRk1Hk
已知 P k / k − 1 , P k − 1 P_{k/k-1},P_k^{-1} Pk/k1,Pk1:是对称正定的,那么总可以进行奇异值分解:
U k , U k / k − 1 : 单 位 正 交 阵 U_k,U_{k/k-1}:单位正交阵 Uk,Uk/k1:
Λ k , Λ k / k − 1 : n 阶 对 角 阵 且 对 角 线 元 素 均 为 正 \Lambda_k,\Lambda_{k/k-1}:n阶对角阵且对角线元素均为正 Λk,Λk/k1:n线
P k = U k Λ k U k T , P k / k − 1 = U k / k − 1 Λ k / k − 1 U k / k − 1 T P_k=U_k\Lambda_kU_k^T,P_{k/k-1}=U_{k/k-1}\Lambda_{k/k-1}U_{k/k-1}^T Pk=UkΛkUkT,Pk/k1=Uk/k1Λk/k1Uk/k1T
P k / k − 1 P_{k/k-1} Pk/k1的推导:
带入均方误差阵:
P k / k − 1 = U k / k − 1 Λ k / k − 1 U k / k − 1 T = Φ k / k − 1 U k − 1 Λ k − 1 U k − 1 T Φ k / k − 1 T + Γ k − 1 Q k − 1 Γ k − 1 T = [ Φ k / k − 1 U k − 1 Λ k − 1 1 / 2 Γ k − 1 Q k − 1 1 / 2 ] [ ( Λ k − 1 1 / 2 ) T U k − 1 T Φ k / k − 1 T ( Q k − 1 1 / 2 ) T Γ k − 1 T ] P_{k/k-1}=U_{k/k-1}\Lambda_{k/k-1}U_{k/k-1}^T=\Phi_{k/k-1}U_{k-1}\Lambda_{k-1}U_{k-1}^T\Phi^T_{k/k-1}+\Gamma_{k-1}Q_{k-1}\Gamma_{k-1}^T \\ =\left[\begin{matrix} \Phi_{k/k-1}U_{k-1}\Lambda_{k-1}^{1/2}&\Gamma_{k-1}Q_{k-1}^{1/2} \end{matrix}\right]\left[\begin{matrix} (\Lambda_{k-1}^{1/2})^TU_{k-1}^T\Phi_{k/k-1}^T\\ (Q_{k-1}^{1/2})^T\Gamma_{k-1}^T \end{matrix}\right] Pk/k1=Uk/k1Λk/k1Uk/k1T=Φk/k1Uk1Λk1Uk1TΦk/k1T+Γk1Qk1Γk1T=[Φk/k1Uk1Λk11/2Γk1Qk11/2][(Λk11/2)TUk1TΦk/k1T(Qk11/2)TΓk1T]
再对 [ Φ k / k − 1 U k − 1 Λ k − 1 1 / 2 Γ k − 1 Q k − 1 1 / 2 ] \left[\begin{matrix} \Phi_{k/k-1}U_{k-1}\Lambda_{k-1}^{1/2}&\Gamma_{k-1}Q_{k-1}^{1/2} \end{matrix}\right] [Φk/k1Uk1Λk11/2Γk1Qk11/2]进行奇异值分解为:
S k / k − 1 : n 阶 单 位 正 交 阵 S_{k/k-1}:n阶单位正交阵 Sk/k1:n
V k / k − 1 : n + 1 阶 单 位 正 交 阵 V_{k/k-1}:n+1阶单位正交阵 Vk/k1:n+1
[ Φ k / k − 1 U k − 1 Λ k − 1 1 / 2 Γ k − 1 Q k − 1 1 / 2 ] = S k / k − 1 D k / k − 1 V k / k − 1 T \left[\begin{matrix} \Phi_{k/k-1}U_{k-1}\Lambda_{k-1}^{1/2}&\Gamma_{k-1}Q_{k-1}^{1/2} \end{matrix}\right]=S_{k/k-1}D_{k/k-1}V_{k/k-1}^T [Φk/k1Uk1Λk11/2Γk1Qk11/2]=Sk/k1Dk/k1Vk/k1T

带入均方误差阵:
P k / k − 1 = U k / k − 1 Λ k / k − 1 U k / k − 1 T = [ Φ k / k − 1 U k − 1 Λ k − 1 1 / 2 Γ k − 1 Q k − 1 1 / 2 ] [ ( Λ k − 1 1 / 2 ) T U k − 1 T Φ k / k − 1 T ( Q k − 1 1 / 2 ) T Γ k − 1 T ] = ( S k / k − 1 D k / k − 1 V k / k − 1 T ) ( S k / k − 1 D k / k − 1 V k / k − 1 T ) T = S k / k − 1 ( D k / k − 1 D k / k − 1 T ) S k / k − 1 T P_{k/k-1}=U_{k/k-1}\Lambda_{k/k-1}U_{k/k-1}^T =\left[\begin{matrix} \Phi_{k/k-1}U_{k-1}\Lambda_{k-1}^{1/2}&\Gamma_{k-1}Q_{k-1}^{1/2} \end{matrix}\right]\left[\begin{matrix} (\Lambda_{k-1}^{1/2})^TU_{k-1}^T\Phi_{k/k-1}^T\\ (Q_{k-1}^{1/2})^T\Gamma_{k-1}^T \end{matrix}\right] \\ =(S_{k/k-1}D_{k/k-1}V_{k/k-1}^T)(S_{k/k-1}D_{k/k-1}V_{k/k-1}^T)^T \\ =S_{k/k-1}(D_{k/k-1}D_{k/k-1}^T)S_{k/k-1}^T Pk/k1=Uk/k1Λk/k1Uk/k1T=[Φk/k1Uk1Λk11/2Γk1Qk11/2][(Λk11/2)TUk1TΦk/k1T(Qk11/2)TΓk1T]=(Sk/k1Dk/k1Vk/k1T)(Sk/k1Dk/k1Vk/k1T)T=Sk/k1(Dk/k1Dk/k1T)Sk/k1T
其中 D k / k − 1 D k / k − 1 T D_{k/k-1}D_{k/k-1}^T Dk/k1Dk/k1T是n阶正定的对角阵,令:
U k / k − 1 = S k / k − 1 , Λ k / k − 1 1 / 2 = ( D k / k − 1 D k / k − 1 T ) 1 / 2 U_{k/k-1}=S_{k/k-1},\Lambda_{k/k-1}^{1/2}=(D_{k/k-1}D_{k/k-1}^T)^{1/2} Uk/k1=Sk/k1,Λk/k11/2=(Dk/k1Dk/k1T)1/2
Λ k / k − 1 1 / 2 \Lambda_{k/k-1}^{1/2} Λk/k11/2为长方对角阵 D k / k − 1 D_{k/k-1} Dk/k1的对角元素,重新构成方阵,即:
D k / k − 1 = [ Λ k / k − 1 1 / 2 0 n × l ] D_{k/k-1}=\left[\begin{matrix} \Lambda_{k/k-1}^{1/2}&0_{n×l} \end{matrix}\right] Dk/k1=[Λk/k11/20n×l]
P k P_{k} Pk的推导(与 P k / k − 1 P_{k/k-1} Pk/k1相同):
S k : n 阶 单 位 正 交 阵 S_k:n阶单位正交阵 Sk:n
V k : n + m 阶 单 位 正 交 阵 V_k:n+m阶单位正交阵 Vk:n+m
D k : n × ( n + m ) 阶 单 位 正 交 阵 D_k:n×(n+m)阶单位正交阵 Dk:n×(n+m)
P k / k − 1 = U k / k − 1 Λ k / k − 1 − 1 U k / k − 1 T + H k T R k − 1 H k = [ U k / k − 1 Λ k / k − 1 − 1 / 2 H k T R k − 1 / 2 ] [ ( Λ k / k − 1 − 1 / 2 ) T U k / k − 1 T ( R k − 1 / 2 ) T H k ] = ( S k D k V k T ) ( S k D k V k T ) T P_{k/k-1}=U_{k/k-1}\Lambda_{k/k-1}^{-1}U_{k/k-1}^T+H_k^TR_k^{-1}H_k \\ =\left[\begin{matrix} U_{k/k-1}\Lambda_{k/k-1}^{-1/2}&H_k^TR_{k}^{-1/2} \end{matrix}\right]\left[\begin{matrix} (\Lambda_{k/k-1}^{-1/2})^TU_{k/k-1}^T\\ (R_k^{-1/2})^TH_k \end{matrix}\right] \\ =(S_kD_kV_k^T)(S_kD_kV_k^T)^T Pk/k1=Uk/k1Λk/k11Uk/k1T+HkTRk1Hk=[Uk/k1Λk/k11/2HkTRk1/2][(Λk/k11/2)TUk/k1T(Rk1/2)THk]=(SkDkVkT)(SkDkVkT)T
同理得到:
U k = S k , Λ k − 1 / 2 = ( D k D k T ) 1 / 2 D k = [ Λ k − 1 / 2 0 n × m ] U_k=S_k,\Lambda_k^{-1/2}=(D_kD_k^T)^{1/2} \\ D_k=\left[\begin{matrix} \Lambda_k^{-1/2}&0_{n×m}\\ \end{matrix}\right] Uk=Sk,Λk1/2=(DkDkT)1/2Dk=[Λk1/20n×m]
奇异值分解滤波算法流程如下:
[ Φ k / k − 1 U k − 1 Λ k − 1 1 / 2 Γ k − 1 Q k − 1 1 / 2 ] → S V D → ( S k / k − 1 , D k / k − 1 ) → ( U k / k − 1 , Λ k / k − 1 1 / 2 ) \left[\begin{matrix} \Phi_{k/k-1}U_{k-1}\Lambda_{k-1}^{1/2}&\Gamma_{k-1}Q_{k-1}^{1/2} \end{matrix}\right]\rightarrow^{SVD}\rightarrow(S_{k/k-1},D_{k/k-1}^{})\rightarrow(U_{k/k-1},\Lambda_{k/k-1}^{1/2}) [Φk/k1Uk1Λk11/2Γk1Qk11/2]SVD(Sk/k1,Dk/k1)(Uk/k1,Λk/k11/2)
[ U k / k − 1 Λ k − 1 − 1 / 2 H k T R k − 1 − 1 / 2 ] → S V D → ( S k , D k ) → ( U k , Λ k − 1 / 2 ) \left[\begin{matrix} U_{k/k-1}\Lambda_{k-1}^{-1/2}&H_{k}^TR_{k-1}^{-1/2} \end{matrix}\right]\rightarrow^{SVD}\rightarrow(S_{k},D_{k}^{})\rightarrow(U_{k},\Lambda_{k}^{-1/2}) [Uk/k1Λk11/2HkTRk11/2]SVD(Sk,Dk)(Uk,Λk1/2)
K k = U k Λ k U k T H k T R k − 1 K_k=U_k\Lambda_kU^T_kH_k^TR_k^{-1} Kk=UkΛkUkTHkTRk1

在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值