奇异值(singular Value Decomposition,SVD)分解滤波
将三角阵的求逆变为对角阵(plotter平方根滤波)的求逆,大大降低计算量
<奇异值分解:>
A : 当 为 n 阶 实 对 称 矩 阵 , 可 分 解 为 : A:当为n阶实对称矩阵,可分解为: A:当为n阶实对称矩阵,可分解为:
Q Q T = I , Q 为 标 准 正 交 阵 , Q 的 列 坐 标 为 特 征 向 量 QQ^T=I,Q为标准正交阵,Q的列坐标为特征向量 QQT=I,Q为标准正交阵,Q的列坐标为特征向量
Γ : 为 特 征 值 构 成 的 对 角 矩 阵 \Gamma:为特征值构成的对角矩阵 Γ:为特征值构成的对角矩阵
A = Q Γ Q T ( 特 征 值 分 解 E V D ) Γ = [ λ 1 . . . . . . . . . . . . . λ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . λ n ] A=Q\Gamma Q^T(特征值分解EVD) \\ \Gamma=\left[\begin{matrix} \lambda_1&...&...&....\\...&\lambda_2&...&....\\...&...&....&....\\...&...&...&\lambda_n\\ \end{matrix}\right] A=QΓQT(特征值分解EVD)Γ=⎣⎢⎢⎡λ1............λ2...............................λn⎦⎥⎥⎤
A : 当 为 n 阶 实 矩 阵 , 可 分 解 为 : A:当为n阶实矩阵,可分解为: A:当为n阶实矩阵,可分解为:
U U T = I , U 为 单 位 正 交 阵 , 左 奇 异 矩 阵 , U ∈ R m × m UU^T=I,U为单位正交阵,左奇异矩阵,U\in R_{m×m} UUT=I,U为单位正交阵,左奇异矩阵,U∈Rm×m
V V T = I , V 为 单 位 正 交 阵 , 右 奇 异 矩 阵 , V ∈ R n × n VV^T=I,V为单位正交阵,右奇异矩阵,V\in R_{n×n} VVT=I,V为单位正交阵,右奇异矩阵,V∈Rn×n
Σ : 奇 异 值 , 除 了 对 角 元 素 , 其 他 元 素 为 0 , Σ ∈ R m × n \Sigma:奇异值,除了对角元素,其他元素为0,\Sigma \in R_{m×n} Σ:奇异值,除了对角元素,其他元素为0,Σ∈Rm×n
A = U Σ V T Σ = [ σ 1 0 . . . 0 0 0 σ 2 . . . 0 0 0 0 . . . 0 0 0 0 . . . σ n 0 ] m × n A=U\Sigma V^T \\ \Sigma=\left[\begin{matrix} \sigma_1&0&...&0&0\\0&\sigma_2&...&0&0\\ 0&0&...&0&0\\0&0&...&\sigma_n&0 \end{matrix}\right]_{m×n} A=UΣVTΣ=⎣⎢⎢⎡σ10000σ200............000σn0000⎦⎥⎥⎤m×n
求解:
A A T = U Σ V T V Σ T U T = U Σ Σ T U T AA^T=U\Sigma V^TV\Sigma^TU^T=U\Sigma\Sigma^TU^T AAT=UΣVTVΣTUT=UΣΣTUT
已知kalman滤波均方误差阵更新公式如下:
P k / k − 1 = Φ k / k − 1 P k − 1 Φ k / k − 1 T + Γ k − 1 Q k − 1 Γ k − 1 T P k − 1 = P k / k − 1 − 1 + H k T R k − 1 H k P_{k/k-1}=\Phi_{k/k-1}P_{k-1}\Phi^T_{k/k-1}+\Gamma_{k-1}Q_{k-1}\Gamma_{k-1}^T \\ P_k^{-1}=P_{k/k-1}^{-1}+H_k^TR_k^{-1}H_k Pk/k−1=