[神经网络]实例分割Mask RCNN

文章对比了实例分割和语义分割,重点介绍了MaskRCNN网络结构,包括其特有的RoIAlign层以及Mask分支。MaskRCNN在FasterRCNN基础上增加了一条用于实例分割的分支,且Mask分支的损失函数基于BCELoss计算。RoIAlign的引入提高了计算精度。
摘要由CSDN通过智能技术生成

一、概述

        实例分割和语义分割均可将图片按像素级进行切割,区别是实例分割可以区分不同个体,但语义分割不行。

                                 (实例分割)                                                (语义分割)

二、网络结构

        相较于Faster RCNN,Mask RCNN将RoI Plooing体换为了RoI Align。且在Faster RCNN之外并联了一个实例分割的分支。

        1.Mask结构

                Mask分支与预测分支不共用RoI Align,Mask分支的RoI最后得出的特征图为14*14。结构如下图:

                得出的结果为28*28*numclasses,对于每个类别都预测了蒙板。

                网络训练时,Mask分支的目标由RPN提供;但预测时,Mask分支的目标由Fast RCNN提供,因为训练时,PRN可能对一个网络提供多个预测值(框),相当于数据增强;而预测,仅会得到一个预测框。

         2.RoI Align

                RoI Pooling计算的为目标到左上角的偏移距离,涉及两次取整。会对最终结果造成影响

                而RoI Align计算的是目标点到左上角的距离,没有取整,可以提升计算精度

                 具体计算为使用双线性插值来计算

四、损失函数计算

         Loss = L_{rpn}+L_{fast\_rcnn}+L_{mask}

        其中rpn和fast_rcnn的损失计算同faster  rcnn,而Mask分支的损失函数计算如下:

                         按不同类别计算BCELoss。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值