保姆级pytorch安装教程,win10,win11,python3.12.x,跟着步骤十分钟装完

前言

其实我几年前就摸索着在电脑里装pytorch,中间遇到各种问题,折腾两天才安装好,最近刚好给新电脑装python以及pytorch,发现很简单很轻松,这里就从零开始,按照步骤十分钟即可完成安装。本教程主要给刚入坑的萌新食用,简单明了。

基础知识:CMD又称命令提示符,在窗口中输入命令符可以执行对应操作。打开方式在菜单栏搜索框中输入“CMD”出来黑色框图标再回车进入命令窗口。

步骤1 安装python

点击我进入官网下载页面下载安装包

目前最新版本是3.12.3版本,后面有新的就下新的。

双击下载的安装包,按步骤安装,这里注意在安装过程中选择自定义安装,勾选下面的“add python 3.12 to Path”,然后一直下一步直到结束。如果忘记勾选“add python 3.12 to Path”看下面教程,勾选过的跳过这个步骤。

如果忘记勾选“add python 3.12 to Path”就完成安装也没关系,在安装完python后在 “系统-高级系统设置-高级” 页面下“环境变量N”,点开后在系统变量框中找到并双击“Path”,点击“新建”将python的安装路径复制进去即可。

不知道自己安装路径的看这里,打开CMD,输入 where python 回车。

画横线的是要复制的python安装路径,添加路径建议再把pip路径加上,pip路径一般是在python路径后加上"\Scripts"即可,如上图。

最后在CMD中检查python是否正常运行,打开一个新的cmd窗口,输入“python”回车,如果如下图所示显示python当前版本等信息,就证明这一步安装完成。此时进入下一步。

C:\Users\ASUS>python
Python 3.12.3 (tags/v3.12.3:f6650f9, Apr  9 2024, 14:05:25) [MSC v.1938 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

步骤2 安装cuda计算模块

这个模块安装完才能安装pytorch,cuda计算模块针对使用英伟达显卡的用户。在官网中下载安装包。

点我:cuda下载地址

这里安装会自动重启电脑(不会询问你是否重启-_-),安装前记得保存文档等重要进程。重启完进入下一步。

步骤3 查看cuda版本

查看显卡cuda版本对下一步安装pytorch非常重要,查看方法如下

打开CMD,输入命令“nvidia-smi”并回车

可以看到我这里cuda版本为12.5

步骤4 获取pytorch安装命令并安装

进入pytorch官网:点我进入pytorch官网网页往下拉会看到下图页面,复制下面划线的命令。

打开新的CMD窗口,复制命令并回车,即可开始安装。等待安装完成后,验证是否安装成功。验证方法如下:

打开CMD,输入“python”进入python,输入“import torch”调用torch库,回车后在第二行输入“torch.cuda.is_available()”检查cuda是否可用。如果返回“True”则一切正常,这时你已经可以运行支持cuda计算的pytorch环境。

### 如何在Anaconda中配置PyTorch 3.12环境 #### 创建新的Conda虚拟环境 为了确保最佳兼容性和隔离性,在开始之前建议先创建一个新的Conda虚拟环境。这可以通过下面的命令完成: ```bash conda create --name pytorch_env python=3.8 ``` 这条指令将会建立名为`pytorch_env`的新环境并指定Python版本为3.8。 #### 激活新创建的环境 一旦环境被成功创建,下一步就是将其激活以便于后续的操作能够在这个特定环境下执行: ```bash conda activate pytorch_env ``` 此时应该看到命令提示符前出现了`(pytorch_env)`字样表示已切换至目标环境[^1]。 #### 安装PyTorch及相关依赖项 对于安装具体版本如PyTorch 3.12来说,需要注意的是官方并没有提供确切对应此编号的发行版;通常所说的“版本”指的是CUDA或其他组件而非整个框架本身。因此这里假设意图是指定某个稳定发布的PyTorch版本以及其支持GPU加速所需的CUDA工具链。可以使用如下命令来获取最新稳定的PyTorch版本及其推荐搭配的CUDA库(如果需要的话): ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 上述命令会自动解析最适合当前系统的组合方案,并从PyTorch频道下载必要的文件进行部署。请注意调整`cudatoolkit`参数以匹配实际硬件条件下的可用驱动程序版本[^2]。 #### 设置Jupyter Notebook集成 为了让Jupyter Notebook能够在新建的环境中正常工作,还需要额外安装一些软件包: ```bash conda install ipykernel jupyterlab python -m ipykernel install --user --name=pytorch_env --display-name "Python (pytorch_env)" ``` 这些步骤不仅使得可以在Notebook界面里选择对应的内核运行时,同时也增强了交互体验[^4]。 #### 验证安装成果 最后一步是验证所有组件都已经被正确地安置到位。启动JupyterLab服务之后就可以通过浏览器访问Web UI来进行测试了: ```bash jupyter lab ``` 尝试导入PyTorch模块并打印出版本信息作为简单的功能检测手段之一: ```python import torch print(torch.__version__) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值