Python安装Pytorch教程(图文详解)

最近人工智能等多门课需要复现论文,近两年的论文很多都是基于Pytorch环境做的实验,所以,这里总结一下Pytorch的安装教程,做好最快、最简单、最好地完成安装。

本机环境
Win10+1050Ti+Python3.7

1、查看本机的CUDA版本

cmd命令行输入nvidia-smi,在第一行最右边可以看到CUDA的版本号,我的版本是11.1
在这里插入图片描述

2、安装Pytroch

1、点击进入Pytorch官网

在这里插入图片描述
然后选择Get Started,就是如下界面
在这里插入图片描述

2、这里进行Pytorch版本的选择,首先我选择的是Stable稳定版,然后OS是Windows系统,Package包就使用Conda,Language肯定选Python,最后的Compute Platform就根据大家的需求来定了。大家如果想在自己电脑(具有NVIDIA显卡)上用GPU进行深度学习模型的推理,就选CUDA;如果只想调用CPU运行算法模型的推理,就选CPU。

一句话总结:包含CUDA的Pytorch可以在程序中设置调用GPU或CPU运行,不含CUDA的Pytorch只能调用CPU运行程序。

选CPU的同学可以直接看第3步了。我们在第一步已经看过自己的NAVIDA的CUDA版本了,这里我们一定要选择比自己版本低的CUDA。比如,像我的版本是11.1,那么就只能选择10.2,因为11.3对我来说有点高了。
当前官网最新版是CUDA11.3,如果你的CUDA版本比官网推荐的都低,可以点击下面的Previous versions of PyTorch,查看以前的版本。

在这里插入图片描述

3、安装下anaconda深度学习神器,没有安装的同学,请按照这篇教程安装好anaconda,并创建一个python环境:anaconda安装配置教程,python的版本根据你的需求而定,这里我根据复现算法的需求环境,安装的是python3.7。

在这里插入图片描述

4、打开anaconda命令行,先激活需要安装Pytorch的python环境(这里我将python环境命名为pytorch,环境名称随意),复制第二步最下面那段命令行语句,然后回车执行:

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

在这里插入图片描述

5、可以看到将要安装的包里面有pytorch和cudatoolkit,我们输入y确认,然后回车

在这里插入图片描述

6、下面就等待这些package安装成功,可以看到Pytorch还是比较大的,所以耐心等待一下。如果下载过程中卡住的同学,直接到torch镜像源下载安装包进行安装,效果相同。

在这里插入图片描述

7、安装完成后,会提示信息done。

在这里插入图片描述

8、输入pip list,查看我们的包是否被安装,这里可以看到torch相关的包都安装了。

在这里插入图片描述

9、我们输入python进入下Python环境,然后输入import torch,如果没有报错说明可以导入成功。

在这里插入图片描述

10、输入torch.cuda.is_available()查看torch是否可以使用显卡,True就代表可以!

在这里插入图片描述
安装好Pytorch环境后,我们就可以来部署运行些深度学习算法了,比如经典的Yolov5,Mask-RCNN、Swin Transformer等,快去体验吧~

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。开发人员可以使用C语言来为CUDA™架构编写程序,所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。

安装Windows上的Anaconda3、PyTorch和PyCharm的步骤如下: 1. 首先,在浏览器中搜索Anaconda3并访问官方网站。选择适用于Windows的Anaconda3版本,并下载安装程序。 2. 一旦下载完成,运行安装程序。按照默认选项进行安装,注意选择合适的安装路径。 3. 完成Anaconda3的安装后,打开Anaconda Navigator。在Navigator的首页上,可以找到常用的Python工具和环境。 4. 在Anaconda Navigator中,点击"Environments"选项卡,然后点击"Create"按钮来创建一个新的环境。 5. 输入环境的名称(例如"pytorch_env")并选择Python版本,然后点击"Create"按钮。 6. 在创建的环境中,点击"Home"选项卡,然后在右上角的搜索框中输入"pytorch"来搜索PyTorch。 7. 在搜索结果中,选择合适的PyTorch版本(根据自己的需求和系统环境选择)并点击"Apply"按钮进行安装。 8. 等待安装完成后,返回到Navigator的首页,点击"Play"按钮运行PyTorch所在的环境。 9. 现在,可以使用PyTorch库进行深度学习任务了。 10. 接下来,打开PyCharm的官方网站,搜索并下载适用于Windows的PyCharm版本。 11. 运行下载的安装程序,并按照默认选项进行安装。 12. 完成PyCharm的安装后,打开它并选择新建项目或打开现有项目。 13. 在PyCharm中,点击左上角的"File"菜单,选择"Settings"来打开设置。 14. 在设置中,选择"Project Interpreter"选项卡,然后点击右侧的齿轮图标并选择"Add"按钮。 15. 在弹出的窗口中,选择"Conda Environment",然后选择已经创建好的pytorch_env环境。 16. 点击"OK"按钮,等待PyCharm配置所选的环境。 17. 现在,可以在PyCharm中编写和运行使用PyTorch的代码了。 这样,你就成功地在Windows上安装Anaconda3、PyTorch和PyCharm,并设置好了开发环境。可以开始使用PyTorch进行深度学习任务,并使用PyCharm来编写和运行代码了。
评论 142
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

振华OPPO

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值