Python安装Pytorch教程(图文详解)

最近人工智能等多门课需要复现论文,近两年的论文很多都是基于Pytorch环境做的实验,所以,这里总结一下Pytorch的安装教程,做好最快、最简单、最好地完成安装。

本机环境
Win10+1050Ti+Python3.7

1、查看本机的CUDA版本

cmd命令行输入nvidia-smi,在第一行最右边可以看到CUDA的版本号,我的版本是11.1
在这里插入图片描述

2、安装Pytroch

1、点击进入Pytorch官网

在这里插入图片描述
然后选择Get Started,就是如下界面
在这里插入图片描述

2、这里进行Pytorch版本的选择,首先我选择的是Stable稳定版,然后OS是Windows系统,Package包就使用Conda,Language肯定选Python,最后的Compute Platform就根据大家的需求来定了。大家如果想在自己电脑(具有NVIDIA显卡)上用GPU进行深度学习模型的推理,就选CUDA;如果只想调用CPU运行算法模型的推理,就选CPU。

一句话总结:包含CUDA的Pytorch可以在程序中设置调用GPU或CPU运行,不含CUDA的Pytorch只能调用CPU运行程序。

选CPU的同学可以直接看第3步了。我们在第一步已经看过自己的NAVIDA的CUDA版本了,这里我们一定要选择比自己版本低的CUDA。比如,像我的版本是11.1,那么就只能选择10.2,因为11.3对我来说有点高了。
当前官网最新版是CUDA11.3,如果你的CUDA版本比官网推荐的都低,可以点击下面的Previous versions of PyTorch,查看以前的版本。

在这里插入图片描述

3、安装下anaconda深度学习神器,没有安装的同学,请按照这篇教程安装好anaconda,并创建一个python环境:anaconda安装配置教程,python的版本根据你的需求而定,这里我根据复现算法的需求环境,安装的是python3.7。

在这里插入图片描述

4、打开anaconda命令行,先激活需要安装Pytorch的python环境(这里我将python环境命名为pytorch,环境名称随意),复制第二步最下面那段命令行语句,然后回车执行:

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

在这里插入图片描述

5、可以看到将要安装的包里面有pytorch和cudatoolkit,我们输入y确认,然后回车

在这里插入图片描述

6、下面就等待这些package安装成功,可以看到Pytorch还是比较大的,所以耐心等待一下。如果下载过程中卡住的同学,直接到torch镜像源下载安装包进行安装,效果相同。

在这里插入图片描述

7、安装完成后,会提示信息done。

在这里插入图片描述

8、输入pip list,查看我们的包是否被安装,这里可以看到torch相关的包都安装了。

在这里插入图片描述

9、我们输入python进入下Python环境,然后输入import torch,如果没有报错说明可以导入成功。

在这里插入图片描述

10、输入torch.cuda.is_available()查看torch是否可以使用显卡,True就代表可以!

在这里插入图片描述
安装好Pytorch环境后,我们就可以来部署运行些深度学习算法了,比如经典的Yolov5,Mask-RCNN、Swin Transformer等,快去体验吧~

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。开发人员可以使用C语言来为CUDA™架构编写程序,所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。

### 回答1: RTX 3060 是一款由 NVIDIA 推出的高性能显卡,用于计算机视觉和深度学习任务。PyTorch 是一种流行的深度学习框架,可以在 GPU 上高效地运行神经网络模型。 要在 RTX 3060 上安装 PyTorch,首先需要确保正确安装了适合该显卡的显卡驱动程序。可以在 NVIDIA 官方网站上下载并安装最新的适用于 RTX 3060 的显卡驱动程序。 接下来,建议使用 Anaconda 或 Miniconda 来创建一个虚拟环境,这样可以隔离不同项目所使用的 Python 环境。可以使用以下命令来创建一个虚拟环境: conda create -n your_environment_name python=3.8 然后,激活创建的虚拟环境: conda activate your_environment_name 在激活的环境中,可以使用以下命令来安装 PyTorch: conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch 上述命令将安装适用于 CUDA 11.1 的 PyTorch 版本,确保与 RTX 3060 兼容。如果 CUDA 版本不同,请将上述命令中的 "cudatoolkit" 参数更改为相应的 CUDA 版本。 安装完成后,可以通过导入 PyTorch 检查是否成功安装,例如: import torch 如果没有报错,则表示已成功安装 PyTorch安装PyTorch 后,可以使用它来进行各种深度学习任务,如构建神经网络、训练模型和进行推理等。可以参考官方文档和教程来学习如何使用 PyTorch 进行深度学习任务。 总之,要在 RTX 3060 上安装 PyTorch,首先确保正确安装了适合该显卡的显卡驱动程序,然后使用 Anaconda 或 Miniconda 创建一个虚拟环境,并在其中安装 PyTorch。这样,您就可以开始使用 PyTorch 进行深度学习任务了。 ### 回答2: 要安装PyTorch,首先需要确保您的计算机满足以下要求: 1. 操作系统:Windows,Linux或Mac OS 2. Python版本:Python 3.6、3.7、3.8或3.9(推荐版本) 下面是一些步骤来安装PyTorch和相关依赖: 1. 打开终端(对于Windows用户,可以使用Anaconda Prompt) 2. 使用以下命令使用pip安装PyTorch: ``` pip install torch torchvision torchaudio ``` 这将自动安装与您的系统和Python版本兼容的最新PyTorch版本。如果您希望安装特定版本,可以在上述命令中指定版本号。 3. 确认PyTorch安装成功后,您可以使用`import torch`来验证。 4. 如果您想要使用GPU加速,您还需要安装CUDA(Compute Unified Device Architecture)工具包。您可以从NVIDIA官方网站上下载并按照说明安装适合您的显卡和操作系统的CUDA版本。 5. 安装CUDA后,您需要安装CUDA兼容的PyTorch版本。如果您安装CUDA 11.0,可以使用以下命令安装 ``` pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html ``` 在上述命令中,我们指定了与CUDA 11.0兼容的特定版本号。 完成上述步骤后,您就可以使用PyTorch进行深度学习任务了。请记住,在使用GPU加速时,确保您的电脑上安装了适当的GPU驱动程序,并且您的代码正确设置以使用GPU。
评论 142
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

振华OPPO

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值