机器学习—K近邻,KD树算法python实现

本文介绍了K近邻算法的基本要素,包括K值选择、距离度量和分类决策规则,并探讨了在大数据集下如何利用KD树优化搜索效率。详细解释了KD树的构造方法和搜索算法,提供了Python实现的相关代码和数据集下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完整代码及数据集下载
K近邻算法不需要训练,通过搜索训练集,找到预测点与训练集中距离最近的k个实例,然后取k个实例中最多的类型作为预测点的类型。K近邻算法三个基本要素:K值的选择,距离度量,分类决策规则。
算法:
a.在训练集中找出距离预测点x最近的k个点记为集合N。
b.在N中采用多数表决的决策规则,选出最多的类别y作为x的类。

距离度量

闵可夫斯基(Minkowski)距离

Lp(xi,xj)=(l=1n|xlixlj
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值