完整代码及数据集下载
K近邻算法不需要训练,通过搜索训练集,找到预测点与训练集中距离最近的k个实例,然后取k个实例中最多的类型作为预测点的类型。K近邻算法三个基本要素:K值的选择,距离度量,分类决策规则。
算法:
a.在训练集中找出距离预测点x最近的k个点记为集合N。
b.在N中采用多数表决的决策规则,选出最多的类别y作为x的类。
距离度量
闵可夫斯基(Minkowski)距离
Lp(xi,xj)=(∑l=1n|xli−xlj
完整代码及数据集下载
K近邻算法不需要训练,通过搜索训练集,找到预测点与训练集中距离最近的k个实例,然后取k个实例中最多的类型作为预测点的类型。K近邻算法三个基本要素:K值的选择,距离度量,分类决策规则。
算法:
a.在训练集中找出距离预测点x最近的k个点记为集合N。
b.在N中采用多数表决的决策规则,选出最多的类别y作为x的类。
闵可夫斯基(Minkowski)距离