多维高斯分布与协方差矩阵的关系以及高斯椭圆

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_37895339/article/details/80351541

一维高斯分布概率密度函数

f(x;μ,σ)=1σ2πexp((xμ)22σ2)

若随机变量X服从这个高斯分布,则可写作XN(μ,σ)。其中μ为均值,σ为标准差,σ2为方差。

多维高斯分布概率密度函数

如果随机变量X=(X1,X2,,Xp)的分布密度函数有如下形式

f(x1,x2,,xp)=f(x)=12πp/21|Σ|1/2exp[12(xμ)TΣ1(xμ)]

其中μ为均值,Σ为协方差矩阵。关于协方差矩阵的内容可以看关于协方差矩阵在机器学习中的理解
1. 针对二维高斯分布,若随机变量中的两个维度不相关,协方差矩阵对对角阵,则如下图所示
这里写图片描述
这里写图片描述
构成一个圆形。

2.若两个维度数据相关,协方差矩阵为对称矩阵,则如下图所示
这里写图片描述
这里写图片描述
构成一个椭圆形。

3.针对二维高斯分布,协方差矩阵的对角线元素为X1X2轴的方差,反斜对角线上的两个值为协方差,表明X1X2的线性相关程度,(正值时:X1增大,X2也随之增大;负值时:X1增大,X2随之减小)。
图片来自
这里写图片描述
能够看出,图形的形状跟方向跟协方差矩阵XXT相关,所在轴的方差越大则该方向越长,协方差矩阵最大特征值对应的特征向量的方向为椭圆的朝向。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页