重要概念
1.回文
2.子串(连续)
3.子序列(不连续)
4.前缀:指除了最后一个字符以外,一个字符串的全部头部组合。
5.后缀:指除了第一个字符以外,一个字符串的全部尾部组合。
-
-
-
-
- 例:“ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB”,长度为2;
6.前缀树(Trie树)
7.后缀树与后缀树组
8.匹配
字典序
- 例:“ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB”,长度为2;
-
-
-
重要操作
与数组有关的操作:增删改查
字符的替换
字符串的旋转
题目常见类型
1.规则判断
判断字符串是否符合整数规则,返回整数
判断字符串是否符合浮点数规则,返回浮点数
判断字符串是否符合回文规则
2.数字运算
int与long范围有限,通常用字符串拼大整数,与大整数相关的加减乘除操作,需要模拟笔算的过程,
3.与数组操作有关的类型
数组有关的调整、排序等操作
快速排序的划分过程需要掌握与改写
4.字符计数
哈希表进行统计
固定长度的数组代替哈希表C/C++(ASCII码范围0-255,用256长度数组)
滑动窗口问题,寻找无重复字符子串问题,计算变位词问题
5.动态规划问题
最长公共子串问题
最长公共子序列问题
最长回文子串
最长回文子序列
6.搜索类型(如何将string1变换为string2,每一步变换过程)
宽度优先搜索
深度优先搜索
7.高级算法与数据结构解决的问题
Manacher算法解决最长回文子串问题
KMP算法解决字符串匹配问题
前缀树结构
后缀树与后缀树组
示例一
给定彼此独立的两颗树,判断t1中是否有与t2拓扑结构完全相同的子树。
分析:将两颗树序列化,然后用KMP算法进行字符串匹配。时间复杂度为 O ( N + M ) O(N+M) O(N+M)。
示例二
给定两个字符串str1与str2,如果两个字符串中出现的字符种类一样且每种字符出现的次数也一样,那么str1与str2互为变形词,请判断两个字符是否互为变形词。
分析:使用哈希表分别记录每个字符出现的次数。也可以建立一个256的数组,代替哈希表。
bool simpleWord(char *str1, char *str2, const int &length) {
int num1[256] = { 0 };
int num2[256] = { 0 };
for (int i = 0; i < length; ++i) {
++num1[str1[i]];
}
for (int i = 0; i < length; ++i) {
++num2[str2[i]];
}
bool flag = true;
for (int i = 0; i < length; ++i) {
if (num1[i] != num2[i]) {
flag = false;
break;
}
}
return flag;
}
示例三
如果一个字符串str,把字符串str前面任意的部分挪到后面去形成的字符串叫做str的旋转词。比如str=“1234”,则旋转词有“1234”,“2341”,“3412”,“4123”。判断两个字是否互为旋转词。
分析:最优解时间复杂度为 O