加热炉优化燃烧控制系统开发

文章介绍了钢坯在加热炉中的加热过程,强调了温度对钢塑性和变形抗力的影响,以及加热温度、时间、方式的控制。钢坯通过对流和辐射方式吸收热量,炉内分为预加热、加热和均热段,确保温度均匀。加热时间取决于钢坯尺寸、钢种等因素。同时,文章提到了炉温设定模型仿真的目的——确定总热吸收率,并提及了一种自修正算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先给大家推荐本书:
    在这里插入图片描述
认识
加热炉是是把坯料加热到均匀的、适合轧制的温度(奥氏体组织)。温度提高以后,首先是提高钢的塑性,降低变形抗力,使钢容易变形。
钢坯加热模型。如T12钢室温下变形抗力约为600Mpa,加热到1200℃时变形抗力下降到30Mpa左右,只相当室温下变形抗力的二十分之一。

原理
钢坯的加热温度包括表面温度、沿断面上的温度差及沿坯子长度方向上的温度差。钢坯在炉内的最终加热温度是考虑了轧制工艺、轧机的结构特点以及炉子的结构特点等实际情况后规定的。加热到规定温度所需时间,取决于钢坯的尺寸、钢种、采用的温度制度及一些其他条件。

钢坯在炉内以对流方式和辐射方式得到热量,前者是炉气冲刷钢坯表面;后者是炉气和炽热的炉衬辐射热。我们加热炉沿长度方向上分三段控制:即预加热段、加热段和均热段。钢坯进入加热炉预热段,热流逐渐增大,钢坯到二加热段,热流基本保持不变,钢坯到均热段,热流逐渐减小。钢坯在均热段内,钢坯表面温度基本保持不变,而断面温差逐步缩小,钢坯表面得到的热量以热传导的方式向内部扩散。传给钢坯表面的热流越小、受热面积越大、钢坯的断面尺寸越小、钢的导热率越大,断面温差就越小。一般断面大的钢坯要比断面小的钢坯加热时间要长,合金钢要比碳钢的加热时间要长。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
炉温设定模型
在这里插入图片描述
在这里插入图片描述
仿真
在这里插入图片描述
埋偶实验的目的是什么?
确定炉膛各个位置的总热吸收率

参考文献
一种钢坯加热模型自修正算法的制作方法

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨铮...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值