SELU 激活函数《the scaled exponential linear units》

 

B站视频地址: 【戳我】

课件地址: 【戳我】

SELU论文地址【Self-Normalizing Neural Networks】.


1. ReLu 变体

  • Leaky ReLU

  • Parametric ReLU

  • Exponential Linear

2 SELU

  • 形式

其中超参 α 和 λ 的值是 证明得到 的(而非训练学习得到):

α = 1.6732632423543772848170429916717
λ = 1.0507009873554804934193349852946
  • 特点

即:

  • 不存在死区

  • 存在饱和区(负无穷时, 趋于 - αλ

  • 输入大于零时,激活输出对输入进行了放大

  • 证明

记输入 [ a1..ak...aK] 各维独立同分布, 每一维的分布均值为零,方差为 1, 注意: 该分部不一定是高斯分布,只需满足均值为零,方差为 1 即可。

我们的目标是: 寻找一个激活函数,使得神经元输出的激活值 a 也满足均值为零,方差为 1.

根据 ppt 得出一个不严谨的观察:为了满足输出 a 符合 均值为 0, 标准差为 1 , 权重向量 [w1, w2,...wk, wK] 需满足均值为 0, 标准差为 1/K.

3、tensorflow 实现

def selu(x):
    with ops.name_scope('elu') as scope:
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        return scale*tf.where(x>=0.0, x, alpha*tf.nn.elu(x))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值