Variational Information Distillation for Knowledge Transfer

Variational Information Distillation for Knowledge Transfer

将预先训练好的教师神经网络中的知识转移到学生神经网络中,可以显著提高学生神经网络的性能。现有的知识转移方法与教师和学生网络的激活或相应的手工特征相匹配。我们提出了一个知识转移的信息论框架,将知识转移描述为教师和学生网络之间的互信息最大化。我们将我们的方法与现有的知识转移方法在知识提炼和转移学习任务上进行了比较,结果表明我们的方法始终优于现有的方法。我们通过在CIFAR-10上将知识从卷积神经网络(CNN)转移到多层感知器(MLP),进一步证明了我们的方法在跨异构网络架构上的优势。由此产生的MLP明显优于最先进的方法,它达到了与具有单一卷积层的CNN类似的性能。

1. Introduction

深度神经网络(DNN)在各种计算机视觉任务中发挥着重要作用,例如,深度估计[8]、姿势估计[26]、光流[7]、物体分类[11]、检测[10]和分割[25]。一个典型的计算机视觉任务的DNN方法是用大量的标记数据训练一个复杂的端到端神经网络。如果有足够的数据量,这样的方法往往可以提供最先进的性能。然而,在许多情况下,不可能收集到足够大的数据来训练一个DNN。例如,在许多医学图像应用中[24],可用的数据量受到特定疾病患者数量的限制。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
变分推断是一种用于近似求解复杂概率模型后验概率分布的技术。在贝叶斯统计中,我们希望从观测数据推断出最有可能的模型参数。然而,在大多数情况下,由于模型复杂性和计算复杂度的限制,我们很难直接计算后验分布。这时候,变分推断能够通过引入一个简化的概率分布来近似后验分布。 变分推断的基本思想是为原始贝叶斯问题构造一个等价的变分问题,并通过最小化两者之间的差异来求解。具体而言,它假设一个简单的参数化概率分布(即变分分布),并试图通过调整分布参数来使其尽可能接近真实后验。 为了找到最优的变分分布,变分推断利用变分推理和优化方法进行迭代求解。在每次迭代中,它通过最大化变分推理下界来逼近后验分布。这个下界称为证据下界或ELBO(证据下界)。 变分推断的优点在于它可以同时处理大规模和高复杂度的模型,而且能够处理连续和离散变量的混合问题。它还可以灵活地处理缺失数据并处理不同类型数据之间的关联。 然而,变分推断也有其局限性。首先,变分分布选择是一个挑战,如果选择的分布偏离真实后验分布,可能导致近似结果的偏差。其次,变分推断通常需要计算复杂度高且对初始参数值敏感的迭代求解。因此,它可能无法在所有情况下提供最优的近似解。 综上所述,变分推断是一种强大的近似推理方法,可以用于处理复杂概率模型的后验分布。它在计算效率和模型灵活性方面具有一定优势,但同时也存在某些局限性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值