官网崩溃卡顿,10分钟教你用Coze搭建联网满血版DeepSeek R1智能体

在这里插入图片描述
最近,你是不是也被DeepSeek官网的崩溃、卡顿折磨到抓狂?想用AI工具搞点正经事,结果页面转圈圈转得比人生还迷茫……别急!今天这篇教程就是你的“急救包”不用等官网修好,不用懂代码,甚至不用花一分钱,教你用 Coze(字节跳动旗下AI开发平台)花10分钟自己搭一个“满血联网版”DeepSeek R1智能体!
简单来说,就像自己组装一台“高配电脑”:Coze提供现成的“零件”(大模型+工具),你只需要拖拽拼接,就能让DeepSeek R1原地复活,还能给它加上“超能力”——实时联网搜索、精准回答最新信息、流畅到飞起的响应速度。从此告别官网卡顿,彻底实现“AI自由”! 手残党也能轻松搞定,跟着步骤走,咱们直接开干!
接下来就one by one 教大家如何配置一个满血版能联网的DeepSeek R1智能体。步骤很简单,跟着做就完事了~

实现核心逻辑:

注册coze(扣子)专业版,创建智能体,创建对话工作流,对输入内容在线联网检索,引用 deepseek R1 模型对输入内容和联网检索结果进行总结输出。


创建专属你的DeepSeek智能体

打开Coze的官网:https://www.coze.cn/

创建智能体

智能体名称和介绍根据你自己的想法填写,当然也可以沿用我的,不过到时候Coze的商店中就有一大堆叫“DeepSeek R1满血版”的智能体 。
在这里插入图片描述
在这里插入图片描述

选择模式(模式很重要!!!)

选择单Agent(对话流程模式) 。
在这里插入图片描述

创建对话流程

这一步只需要点击添加对话流,其他的都不用设置 。
在这里插入图片描述在这里插入图片描述

对话流的核心配置

最核心的部分来了 ,整个流程还是比较简单明了的,就是:用户提问 -> 模型抽取关键词 -> 必应联网搜索 -> DeepSeek R1回答 -> 结束 。另外看这张图,就知道了!节点就那么几个,最多10分钟,搞定!!核心的逻辑流程说完,你应该也创建好了对话流,进入了搭建页面 ,那就让我们一起开始搭建节点吧!

模型抽取关键词

根据用户输入来抽取关键词,相当于给AI装上“火眼金睛”,步骤如下:

  1. 模型选择豆包-工具调用
  2. 输入变量选择,开始节点的USER_INPUT
  3. 用户提示词(简单粗暴,直接复制 ):分析用户输入问题,从中找出联网搜索关键词。
    在这里插入图片描述在这里插入图片描述在这里插入图片描述
系统提示词:
# 角色
你是一个专业的关键字信息提取师,擅长从用户输入内容中精准提取关键信息,以帮助获取与之高度相关的网页链接。

# 目标
从用户输入内容里提取能有效引导检索到相关网页的关键字信息,提升检索效率与精准度。

# 规则
1. 仔细分析用户输入内容,提炼核心概念与关键限定词。
2. 去除对检索帮助不大的停用词,如“的”“了”“是”“怎么样”“啊”等语气词及助词,但保留具有实际检索价值的词汇。
3. 优先形成简洁、高效且可直接用于搜索的短语或词汇组合。
4. 确保提取的关键字信息具备较高的查询价值,符合主流搜索引擎的检索习惯。
5. 若有多个关键信息点,以合理的组合形式呈现关键字。

# 示例
## 示例1
用户输入:如何挑选适合冬天穿的保暖外套?
提取关键字:冬天 保暖外套 挑选

## 示例2
用户输入:介绍一下最新的智能手机技术有哪些
提取关键字:最新智能手机技术

## 示例3
用户输入:在上海如何找到靠谱的宠物美容店
提取关键字:上海 靠谱宠物美容店 寻找

# 输出要求
仅输出提取的关键字信息,以空格分隔。 
用户提示词:
{{input}}

几个需要特殊注意的地方,定义 input 变量和 output 变量,以及用户提示词地方要把输入参数引入,引入方法{{input}}
在这里插入图片描述
实例测试效果:
在这里插入图片描述

必应联网搜索配置

这一步也非常简单,count 改为 50,将输入字段中的query配置模型输出的output字段即可 。
在这里插入图片描述
定义参数,截图部分尤为注意,query 设置的参数为上一个模型的输出:
在这里插入图片描述

DeepSeek R1终极大招

  1. 模型:那必须得是DeepSeek R1。
  2. 输入:input变量名选择开始节点的USER_INOUT字段,res_for_model变量名选择必应输出的response_for_model字段。
  3. 用户提示词(简单粗暴,直接复制 ):请认真回答用户输入的问题:’’’{{input}}’’‘下面是联网获取的资料供你参考:’’’{{res_for_model}}’’’- 请记住,你会在 回答 中首先输出<思考过程…>里的全部内容,然后再输出 <回答> 的内容- 。另外模型的参数也要设置一下 。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
系统提示词:
# 角色
你是一个专业的deepseek R1在线助手,能够依据用户输入信息,结合网页检索信息,进行深度思考并精准总结相关内容。紧扣用户问题,对网页信息全面覆盖总结,必要时进行合理拓展。

## 技能
### 技能 1: 深度总结
1. 接收用户输入信息后,使用工具检索相关网页信息。
2. 对用户输入和网页检索到的信息进行深度思考和分析。
3. 紧扣用户问题,全面总结内容,必要时进行合理拓展总结后回复用户。

### 技能 2:输出格式
1. deepseek深度总结思考逻辑输出为 output1。
2. 将结论输出为 output2

## 限制:
- 回复内容必须紧密围绕用户问题。
- 总结内容要全面覆盖网页信息,且必要时合理拓展。
- 所输出的内容应简洁明了,逻辑清晰。 
用户提示词:
用户输入信息:{{input1}}
网页检索信息:{{input2}}

对话流收尾工作

最后设置结束节点,配置参数值,开启流式输出,选择参数名output为回答内容,收工!!!
在这里插入图片描述
在这里插入图片描述

回答内容:
## 思考过程:
{{output1}}## 总结内容:
{{output2}}。
简单测试:

对话流测试

例如:
2025 年 ai 最火的话题有哪些,并讲述内容
deepseek 为什么对美国冲击很大
在这里插入图片描述

发布对话流

家人们,别漏啦!得在右上角发布对话流,只有发出去的,咱的智能体才能“抄作业”!
在这里插入图片描述

智能体引用对话流:

把刚发出去的对话流,一股脑儿塞进智能体,然后大摇大摆送到商店上架啦!
在这里插入图片描述

实战测试(整活环节)

在这里插入图片描述

发布智能体到商店

可容发布到商店上线成功后,你想怎么玩就怎么玩!想自己访问链接,比如挂到企业微信里,没问题!想用API调用,也完全OK!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

引用链接方法:

去商店里把你亲手打造的智能体“揪”出来,然后点击右上角分享,把生成的链接复制粘贴,想用的时候直接拿来就成,主打一个方便快捷!
在这里插入图片描述

到此教程就全部结束!想要快速体验的,更多内容请关注微信公众号:郎清水,会第一时间发布文章。

### 使用Coze框架搭建DeepSeek智能体 #### 创建项目结构 为了使用Coze框架构建DeepSeek智能体,首先需要创建合适的工作目录结构。这有助于保持项目的整洁有序并便于后续维护。 ```bash mkdir coze_deepseek_project cd coze_deepseek_project ``` #### 初始化环境配置 安装必要的依赖库来支持CozeDeepSeek之间的交互操作。通常情况下,这些工具包会通过Python pip命令来进行管理: ```bash pip install coze-sdk deepseek-api requests ``` #### 编写初始化脚本 编写一个名为`init.py`的文件用于设置基本参数以及连接到DeepSeek服务端接口。此部分代码负责定义API密钥和其他认证信息以便于安全访问云端资源[^1]。 ```python import os from dotenv import load_dotenv load_dotenv() DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY') COZE_AGENT_ID = "your-agent-id" ``` #### 设计Agent逻辑模块 接下来,在同一目录下建立一个新的Python源码文件叫做`agent_logic.py`。该文件包含了具体业务场景下的处理流程,例如接收输入数据、调用外部模型预测结果等核心功能实现[^2]。 ```python class AgentLogic: def __init__(self, agent_id): self.agent_id = agent_id def process_input(self, input_data): # 处理接收到的数据... pass def call_model_api(self, processed_data): headers = { 'Authorization': f'Bearer {os.environ["DEEPSEEK_API_KEY"]}', 'Content-Type': 'application/json' } response = requests.post( url='https://api.deepseek.com/v1/models/predict', json=processed_data, headers=headers ) return response.json() ``` #### 构建多智能体协作机制 利用Coze提供的通信协议设计多个独立运行但又相互配合工作的智能实体。每个个体都可以执行特定的任务并将中间成果共享给其他成员共同完成最终目标。 ```python from multiprocessing import Process, Queue def run_agent(agent_queue, result_queue): while True: task = agent_queue.get() if not task: break logic_instance = AgentLogic(COZE_AGENT_ID) output = logic_instance.process_input(task['input']) prediction_result = logic_instance.call_model_api(output) result_queue.put(prediction_result) if __name__ == '__main__': num_agents = 5 tasks_to_do = [...] # 待分配的任务列表 results_collected = [] agents_queues = [Queue() for _ in range(num_agents)] results_queue = Queue() processes = [] for i in range(num_agents): p = Process(target=run_agent, args=(agents_queues[i], results_queue)) p.start() processes.append(p) try: for idx, item in enumerate(tasks_to_do): agents_queues[idx % num_agents].put(item) for q in agents_queues: q.put(None) # 发送结束信号 for proc in processes: proc.join() while not results_queue.empty(): res = results_queue.get() results_collected.append(res) except KeyboardInterrupt: print("\nTerminating...") for q in agents_queues: q.put(None) for proc in processes: proc.terminate() ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值