本代码主要用于调用darknet的python接口,进行图片的批量检测,并且将检测结果的图片保存到指定目录
话不多说,直接上代码,将代码复制并且保存到darknet的python目录下执行。
batch_img_detect.py
# coding: utf-8
# author: HXY
"""
对照片进行批量检测;
并将检测结果照片存储;
"""
from ctypes import *
import random
import os
import cv2
import time
def sample(probs):
s = sum(probs)
probs = [a / s for a in probs]
r = random.uniform(0, 1)
for i in range(len(probs)):
r = r - probs[i]
if r <= 0:
return i
return len(probs) - 1
def c_array(ctype, values):
arr = (ctype * len(values))()
arr[:] = values
return arr
class BOX(Structure):
_fields_ = [("x", c_float),
("y", c_float),
("w", c_float),
("h", c_float)]
class DETECTION(Structure):
_fields_ = [("bbox", BOX),
("classes", c_int),
("prob", POINTER(c_float)),
("mask", POINTER(c_float)),
("objectness", c_float),
("sort_class", c_int)]
class IMAGE(Structure):
_fields_ = [("w", c_int),
("h", c_int),
("c", c_int),
("data", POINTER(c_float))]
class METADATA(Structure):
_fields_ = [("classes", c_int),
("names", POINTER(c_char_p))]
# 使用时请修改为你编译生成的.so文件目录
lib = CDLL("/home/hxy/project/darknet/libdarknet.so", RTLD_GLOBAL)
lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int
predict = lib.network_predict
predict.argtypes = [c_void_p, POINTER(c_float)]
predict.restype = POINTER(c_float)
set_gpu = lib.cuda_set_device
set_gpu.argtypes = [c_int]
make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.restype = IMAGE
get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)]
get_network_boxes.restype = POINTER(DETECTION)
make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)
free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]
free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
network_predict = lib.network_predict
network_predict.argtypes = [c_void_p, POINTER(c_float)]
reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]
load_net = lib.load_network
load_net.argtypes = [c_char_p, c_char_p, c_int]
load_net.restype = c_void_p
do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
free_image = lib.free_image
free_image.argtypes = [IMAGE]
letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.restype = IMAGE
load_meta = lib.get_metadata
lib.get_metadata.argtypes = [c_char_p]
lib.get_metadata.restype = METADATA
load_image = lib.load_image_color
load_image.argtypes = [c_char_p, c_int, c_int]
load_image.restype = IMAGE
rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = [IMAGE]
predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)
def classify(net, meta, im):
out = predict_image(net, im)
res = []
for i in range(meta.classes):
res.append((meta.names[i], out[i]))
res = sorted(res, key=lambda x: -x[1])
return res
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
im = load_image(image, 0, 0)
num = c_int(0)
pnum = pointer(num)
predict_image(net, im)
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum)
num = pnum[0]
if (nms): do_nms_obj(dets, num, meta.classes, nms);
res = []
for j in range(num):
for i in range(meta.classes):
if dets[j].prob[i] > 0:
b = dets[j].bbox
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h)))
res = sorted(res, key=lambda x: -x[1])
free_image(im)
free_detections(dets, num)
return res
# 将检测结果绘制到照片上并且保存
if __name__ == "__main__":
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
net = load_net("/cfg/yolov3.cfg".encode('utf-8'), "/weights/yolov3.weights".encode('utf-8'), 0)
meta = load_meta("/cfg/coco.data".encode('utf-8'))
# 测试数据集的路径
test_dir = '/home/test/project/darknet/test_pics'
# 检测结果保存路径
save_dir = '/home/hxy/Desktop/result/'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
pics = os.listdir(test_dir)
count = 0
for im in pics:
img = os.path.join(test_dir, im)
s = time.time()
r = detect(net, meta, img.encode('utf-8'))
# 输出的检测结果中坐标信息为目标的中心点坐标和box的w和w
print("一张图检测耗时:%.3f秒" % (time.time() - s))
im = cv2.imread(img)
for res in r:
x1 = int(res[2][0] - (res[2][2] / 2))
y1 = int(res[2][1] - (res[2][3] / 2))
x2 = x1 + int(res[2][2])
y2 = y1 + int(res[2][3])
cv2.rectangle(im, (x1-5, y1-5), (x2+5, y2+5), (0, 255, 0), 2)
cv2.putText(im, str(res[0]).split("'")[1], (x1-10, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imwrite(save_dir +str(count) +'.jpg', im)
count += 1