Learning Rich Features for Image Manipulation Detection论文笔记

图像篡改技术:拼接、复制、去除

一、解决的问题:

视觉篡改(例如,被篡改边缘附近的篡改),而且可以捕获局部噪声特征中的不一致性。

二、概述

从RGB图像输入中提取特征来发现篡改伪影,如强烈的对比度差、不自然的篡改边界等
利用从富含隐写分析的模型滤波器(SRM)层提取的噪声特征来发现真实和篡改区域之间的噪声不一致。
双线性池化层融合来自两个流的特征

三、网络结构

在这里插入图片描述
RGB stream input:RGB 流输入;对可见的篡改痕迹(例如:物体边界经常出现的高对比度)进行建模,并将边界框(bounding boxes)回归为ground-truth。
SRM filter layer:SRM 过滤层;提取噪声 feature map,然后利用噪声特征提供图像处理分类的附加依据;
Noise stream input:噪声流输入;分析图像中的局部噪声特征,先让输入RGB图像通过一个 SRM 过滤层;
RGB Conv Layers:RGB 卷积层
Noise Conv Layers:噪声卷积层
RGB 流和噪声流共用 RPN 网络生成的 region proposals,RPN 网络只将 RGB 特征作为输入。Faster R-CNN 中的 RPN(Region Proposal Network)负责 propose 可能包含相关目标的图像区域,其经过改造后可以执行图像处理检测。
RPN layer:RPN 层
RoI pooling layer:Rol 池化层;从 RGB 流和噪声流中选择空间特征;
RGB RoI features:RGB RoI 特征;
Bilinear pooling:双线性池化;
Noise RoI features:噪声 Rol 特征;
预测边界框(表示为‘bbx pred’)是 RGB Rol 特征中生成的。为了区别被篡改和未被篡改的区域,我们利用从 RGB 通道中提取的特征来捕捉线索,例如:被篡改边界视觉上的不一致,被篡改区域和真实区域间的对比效应等。
在完成 Rol 池化后,网络的线性池化层将整合从 RGB 流和噪声流中分别提取的空间共现特征。

最后,将所得结果输入到一个全连接层和一个 softmax 层,网络生成预测标签(表示为‘cls pred’))并确定预测边界是否经过处理。
RGB流模拟视觉篡改伪像,例如沿对象边缘的异常高对比度,并用bounding box回归到实际情况。噪声流首先通过将输入RGB图像传递通过SRM滤波器层来获得噪声特征图,并利用噪声特征来为操纵分类提供额外的证据。 RGB和噪声流共享来自RPN网络的相同区域提议,其仅使用RGB特征作为输入。 RoI池层从RGB和噪声流中选择空间特征。预测的边界框(表示为’bbx pred’)是从RGB RoI特征生成的。在RoI池之后的双线性池化层使网络能够组合来自两个流的空间共现特征。最后,通过完全连接的层和softmax层传递结果,网络产生预测的标签(表示为’cls pred’)并确定预测区域是否已被操纵。

def bbox_transform_inv(boxes, deltas):
    if boxes.shape[0] == 0:
        return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype)

    boxes = boxes.astype(deltas.dtype, copy=False)
    widths = boxes[:, 2] - boxes[:, 0] + 1.0
    heights = boxes[:, 3] - boxes[:, 1] + 1.0
    ctr_x = boxes
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值