【论文笔记】Learning Rich Features for Image Manipulation Detection(CVPR2018)

CVPR2018: Learning Rich Features for Image Manipulation Detection
原文链接:http://arxiv.org/abs/1805.04953
一作开源源码:https://github.com/pengzhou1108

方法的提出

  1. 目前篡改手段越来越多,也越来越高级,有些在对图片进行了篡改之后会对图片进行高斯平滑、压缩等后处理,导致很难识别出被篡改的区域
  2. 目前存在的一些检测技术也存在一些局限性,例如LSTM体系结构、局部噪声特征+CFA模式,这些方法大多集中于特定的篡改伪影,并仅限于特定的篡改技术
  3. 图像篡改检测不同于传统的语义对象检测,因为它更加关注篡改伪影而不是图像内容,这表明需要学习更丰富的特征。本文提出了一种双流的Faster R-CNN网络,来学习丰富的图像篡改检测特征。实验表明,该网络对拼接、复制移动和删除具有鲁棒性。此外,该网络使我们能够对可疑的篡改技术进行分类
  4. 本文还使用SRM滤波器内核来提取低级噪声,用作Faster R-CNN网络的输入,并学习从噪声特征中捕获篡改痕迹。此外,还联合训练一个并行的RGB流来建模中级和高级的视觉篡改伪影

在四个标准图像处理数据集上的实验表明本文的双流框架优于每个单独的流,并且与其他方法相比,在压缩图像和改变大小的图像的检测上表现出了该方法的鲁棒性,达到了最先进的性能。

先导知识

三种常见篡改类型:

  1. 拼接(Image splicing) :把其他图片里面的某个物体拼接到另一张图上。
  2. 复制移动(Copy-move) :同一张图上,进行部分区域的拷贝,然后放到该图中的其它地方。
  3. 去除(Remove):对像素进行修改,将某部分图像“移除”。
    f1
    第一列是真实图像,第二列是P过的图,第三列是真实数据的掩膜展现出篡改的区域。

Faster R-CNN网络

一种目标检测算法。
f2

上图为Faster R-CNN的基本结构,由四个部分组成:

  1. 卷积层(Conv layers)。用于提取图片的特征。输入为整张图片,输出为提取出的特征feature maps。由一组基础的conv+relu+pooling层组成。该feature maps被共享用于后续RPN层和全连接层。
  2. RPN网络(Region Proposal Networks)。RPN网络用于生成候选区域
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值