论文阅读context-aware crowd counting

摘要

经典做法是在整张图上采用同样的滤波器,通过估计局部比例来补偿透视失真。

2、相关工作

早期的人群计数工作主要采取检测方法,即检测出每个头或人体,然后计数。但是,对于拥挤的场景来说,遮挡会使检测变得很困难,因此,大部分情况下,检测方法就被密度估计图替代,即:训练一个回归器,对图片中的不同部分估计密度图,然后综合各个密度图得到原始图片的人数,这种方法法主要利用高斯函数或随机森林方法。尽管这些方法主要依赖于低级特征,但其效果挺好。现在,大家主要基于CNN方法来回归密度图。

我们要测量的人群密度是地面上单位面积内人的数量。

3、1:尺度感知上下文特征

论文把人群计数问题转化为人群密度回归问题。给定一个含有N张训练图片的数据集\{I_i\}_{1\leq i\leq N},对应的ground-truth密度图为D_i^{gt}

论文目标是学习一个具有参数\theta的非线性映射F,将输入图片I_i映射为一个估计的密度图

F(I_i,\theta )=D_i^{est}(I_i)

使得估计值D_i^{est}(I_i)与真实值D_i^{gt}L^2范数下距离足够近。

与传统做法相同,前面10层为预训练的VGG-16网络,给定一张图片I,输出为

f_v=F_{vgg}(I)                             (1)

论文把f_v当做基础特征。

但是,F_{vgg}具有一定的局限性,因为其在整张图片上具有相同的感受野。为了客服这个缺陷,论文用特征金字塔来计算尺度特征,在F_{vgg}的基础上,提取多尺度的上下文信息。计算公式为

s_j=U_{bi}(F_j(P_{ave}(f_v,j),\theta _j)))

其中,对每个尺度j,P_{ave}(f_v,j) 将VGG特征平均为k(j)*k(j)块。F_j是一个卷即核尺寸=1的卷积网络,它将不同通道的特征,在不改变维度的情况下啊,连接在一起。论文这样做的原因是SPP保证了每个特征通道的独立性,因此限制了代表权。论文作者证明了若不做

  • 5
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值