Keras .fit和.fit_generator函数

本文详细介绍了Keras中的.fit和.fit_generator函数,包括它们的工作原理和差异。.fit适用于小型数据集,而.fit_generator适用于大型数据集和需要数据增强的情况。通过实例展示了如何使用Keras数据生成器进行模型训练,强调了在数据量大或需要数据增强时使用.fit_generator的必要性。
摘要由CSDN通过智能技术生成

 

参考博客 

https://blog.csdn.net/learning_tortosie/article/details/85243310

在本教程中,您将了解Keras .fit.fit_generator函数的工作原理,包括它们之间的差异。为了帮助您获得实践经验,我已经提供了一个完整的示例,向您展示如何从头开始实现Keras数据生成器。

Keras深度学习库包括三个独立的函数,可用于训练您自己的模型:

  • .fit
  • .fit_generator
  • .train_on_batch
  • 这三个函数基本上可以完成相同的任务,但他们如何去做这件事是非常不同的。

    让我们逐个探索这些函数,查看函数调用的示例,然后讨论它们彼此之间的差异。

调用.fit

model.fit(trainX, trainY, batch_size=32, epochs=50)

在这里可以看到提供的训练数据(trainX)和训练标签(trainY)。然后,我们指示Keras允许我们的模型训练50个epoch,同时batch size为32

.fit的调用在这里做出两个主要假设ÿ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值