m-arcsinh激活函数

m-arcsinh激活函数结合了SVM和MLP的优点,适用于非线性可分离数据。该函数通过调整arcsinh和平方根函数的权重来改善输入数据到目标类的区分。m-arcsinh不仅能在SVM中最大化边际宽度,还能在MLP中通过扩展范围提高训练效果。
摘要由CSDN通过智能技术生成

m-arcsinh激活函数

论文链接:m-arcsinh: An Efficient and Reliable Function for SVM and MLP in scikit-learn

年份:2020年

简介

对于一个广义的函数,它既可以作为SVM和MLP的核函数,也可以作为激活函数,它必须能够:

  1. 最大化SVM的边际宽度
  2. 通过适当扩展MLP范围的传输机制,改善对输入数据到目标类的区分。

满足上述两个要求的函数分别是SVM的线性核函数和MLP的tanh函数。然而,虽然线性核不适合在MLP中适当地利用梯度下降训练在非线性可分离数据的存在,tanh函数有一个扩展的范围,具有sigmoidal行为支持向量机,以可靠地最大化边缘宽度与此类数据。由此设计了一个新的函数,同时适应SVM和MLP,利用双曲正弦函数和平方根函数进行加权,arcsinh的权重为 1 3 \frac{1}{3} 31,平方根的权重为 1 4 \frac{1}{4} 41,由此获得:
m − a r c s i n h ( x ) = a r c s i n h ( x ) × 1 3 × 1 4 × ∣ x ∣ m-arcsinh(x) = arcsinh(x)\times \frac{1}{3} \times \frac{1}{4}\times \sqrt{|x|} marcsinh(x)=arcsinh(x)×31×41×x
该函数的导数为:
m − a r c s i n h ′ ( x ) = ∣ x ∣ × 1 12 × x 2 + 1 + x × a r c s i n h ( x ) 24 × ∣ x ∣ 3 2 m-arcsinh^\prime(x) = \sqrt{|x|} \times \frac{1}{12\times\sqrt{x^2+1}}+\frac{x\times arcsinh(x)}{24\times |x|^\frac{3}{2}} marcsinh(x)=x ×12×x2+1 1+24×x23x×arcsinh(x)

该函数的图像如下图所示:在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值