m-arcsinh激活函数
论文链接:m-arcsinh: An Efficient and Reliable Function for SVM and MLP in scikit-learn
年份:2020年
简介
对于一个广义的函数,它既可以作为SVM和MLP的核函数,也可以作为激活函数,它必须能够:
- 最大化SVM的边际宽度
- 通过适当扩展MLP范围的传输机制,改善对输入数据到目标类的区分。
满足上述两个要求的函数分别是SVM的线性核函数和MLP的tanh函数。然而,虽然线性核不适合在MLP中适当地利用梯度下降训练在非线性可分离数据的存在,tanh函数有一个扩展的范围,具有sigmoidal行为支持向量机,以可靠地最大化边缘宽度与此类数据。由此设计了一个新的函数,同时适应SVM和MLP,利用双曲正弦函数和平方根函数进行加权,arcsinh的权重为
1
3
\frac{1}{3}
31,平方根的权重为
1
4
\frac{1}{4}
41,由此获得:
m
−
a
r
c
s
i
n
h
(
x
)
=
a
r
c
s
i
n
h
(
x
)
×
1
3
×
1
4
×
∣
x
∣
m-arcsinh(x) = arcsinh(x)\times \frac{1}{3} \times \frac{1}{4}\times \sqrt{|x|}
m−arcsinh(x)=arcsinh(x)×31×41×∣x∣
该函数的导数为:
m
−
a
r
c
s
i
n
h
′
(
x
)
=
∣
x
∣
×
1
12
×
x
2
+
1
+
x
×
a
r
c
s
i
n
h
(
x
)
24
×
∣
x
∣
3
2
m-arcsinh^\prime(x) = \sqrt{|x|} \times \frac{1}{12\times\sqrt{x^2+1}}+\frac{x\times arcsinh(x)}{24\times |x|^\frac{3}{2}}
m−arcsinh′(x)=∣x∣×12×x2+11+24×∣x∣23x×arcsinh(x)
该函数的图像如下图所示: