torch.distributed.init_process_group()详细说明(RANK/WORLD_SIZE)


前言

最近在研究deepspeed的方法,得知deepspeed方法也是对pytorch分布式调用的进一步封装,我将回顾以往知识(重温(已忘记了)),之前多数直接使用torch函数调用,或已不太记得之前研究过的东西了,今日特意回顾torch的init_process_group函数,但介于有rank world_size等配置,我特意写此文章详细整理该知识。


一、torch.distributed.init_process_group函数定义

torch.distributed.init_process_group(
    backend,
    init_method=None,
    timeout=datetime.timedelta(seconds=1800),
    world_size=-1,
    rank=-1,
    store=None,
    group_name='default',
    **kwargs
)


参数说明:

backend:指定分布式后端的名称,例如 ‘nccl’、‘gloo’ 或 ‘mpi’。
init_method:初始化方法的 URL 或文件路径。默认为 None,表示使用默认的初始化方法。
timeout:初始化过程的超时时间,默认为 1800 秒。
world_size:参与分布式训练的总进程数。默认为 -1,表示从环境变量中自动获取。
rank:当前进程的排名。默认为 -1,表示从环境变量中自动获取。
store:用于存储进程组信息的存储对象。默认为 None,表示使用默认存储。
group_name:进程组的名称,默认为 ‘default’。
**kwargs:其他可选参数,根据不同的分布式后端而定。

二、RANK、WORLD_SIZE 和 LOCAL_RANK

在分布式训练中,RANK、WORLD_SIZE 和 LOCAL_RANK 都是用于标识进程的环境变量,但它们的含义略有不同:

1、RANK说明

RANK 表示当前进程在所有进程中的排名。例如,如果有 4 个进程,它们的 RANK 分别为 0、1、2 和 3。在分布式训练中,我们通常需要使用 RANK 来决定当前进程的角色和任务,例如是否是主进程、是否需要保存模型等。

2、WORLD_SIZE说明

WORLD_SIZE 表示所有进程的总数。例如,如果有 4 个进程,它们的 WORLD_SIZE 均为 4。在分布式训练中,我们通常需要使用 WORLD_SIZE 来决定数据并行的方式和分配任务的方式等。

3、LOCAL_RANK说明

LOCAL_RANK 表示当前进程在同一台计算机上的排名。例如,如果有 4 个进程,其中 2 个运行在计算机 A 上,另外 2 个运行在计算机 B 上,那么在计算机 A 上运行的两个进程的 LOCAL_RANK 分别为 0 和 1,在计算机 B 上运行的两个进程的 LOCAL_RANK 分别为 0 和 1。在分布式训练中,我们通常需要使用 LOCAL_RANK 来决定如何分配 GPU 设备和数据等。

在分布式训练中,这三个环境变量通常需要在所有进程中保持一致,并且需要在初始化分布式训练环境时设置。例如,在 PyTorch 中,可以使用 torch.distributed.init_process_group() 函数来初始化分布式训练环境,并自动设置这三个环境变量。

三、环境变量与应用

我将在这里介绍只有2个进程的world_size与rank的使用方法,在启动2个进程前,我先介绍1个进程的环境配置等方法,特别是结合torch的init_process_group搭配使用方式。

但使用分布式环境前,都需要在os.environ系统环境变量声明ip与port端口,如下:

# 设置主进程的 IP 地址和端口号
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29501'

当然,你也可以执行代码借助命令给定,我这里是在py文件中直接配置。

1、使用系统环境配置

直接使用os.environ系统环境变量指定rank与world_size,init_process_group能自动获取系统配置,我在这里rank=0,world_size=1分别表示进程rank0与共1个进程,如下:

os.environ['RANK'] = '0'
os.environ['WORLD_SIZE'] = '1'
# 初始化分布式训练环境
dist.init_process_group(backend='nccl')

完整的示列代码如下:

import torch.distributed as dist
import os
# 设置主进程的 IP 地址和端口号
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29501'
os.environ['RANK'] = '0'
os.environ['WORLD_SIZE'] = '1'
dist.init_process_group(backend='nccl') # 初始化分布式训练环境
# 获取当前进程的排名和总进程数
rank = dist.get_rank()
world_size = dist.get_world_size()
print(f"Rank: {rank}, World size: {world_size}") # 在分布式训练中使用排名和总进程数
# 执行分布式训练代码
# ...
dist.destroy_process_group()  # 释放资源

结果如下:
在这里插入图片描述

2、init_process_group直接配置

你也可以不使用os.environ系统环境变量指定rank与world_size,直接使用init_process_group指定,效果和上面一致,如下:

dist.init_process_group(backend='nccl',rank=0,world_size=1)  # 初始化分布式训练环境

完整的示列代码如下:

import torch.distributed as dist
import os
# 设置主进程的 IP 地址和端口号
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29501'
dist.init_process_group(backend='nccl',rank=0,world_size=1)  # 初始化分布式训练环境
# 获取当前进程的排名和总进程数
rank = dist.get_rank()
world_size = dist.get_world_size()
print(f"Rank: {rank}, World size: {world_size}") # 在分布式训练中使用排名和总进程数
# 执行分布式训练代码
# ...
dist.destroy_process_group()  # 释放资源

结果如下:
在这里插入图片描述

3、多个进程应用(world_size=2)

我们继续设置2个进程world_size=2,则使用2个rank分别运行各自子进程,每个子进程我们会有一个py文件代码,主要更改地方为rank与world_size值,其中2个py文件分别为
try_rank0.py与try_rank1.py,其代码如下:

try_rank0.py:

import torch.distributed as dist
import os
# 设置主进程的 IP 地址和端口号
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29501'

dist.init_process_group(backend='nccl', rank=0, world_size=2)  # 初始化分布式训练环境
# 获取当前进程的排名和总进程数
rank = dist.get_rank()
world_size = dist.get_world_size()
print(f"Rank: {rank}, World size: {world_size}") # 在分布式训练中使用排名和总进程数
# 执行分布式训练代码
# ...
dist.destroy_process_group()  # 释放资源

try_rank1.py:

import torch.distributed as dist
import os
# 设置主进程的 IP 地址和端口号
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29501'
# 设置当前进程的局部排名(local_rank)
os.environ['RANK'] = '1'
os.environ['WORLD_SIZE'] = '2'

dist.init_process_group(backend='nccl') # 初始化分布式训练环境
# 获取当前进程的排名和总进程数
rank = dist.get_rank()
world_size = dist.get_world_size()
# 在分布式训练中使用排名和总进程数
print(f"Rank: {rank}, World size: {world_size}")
# 执行分布式训练代码
# ...
dist.destroy_process_group()  # 释放资源

需先执行运行主节点try_rank0.py文件,在执行try_rank1.py文件,其结果分别如下:

在这里插入图片描述
在这里插入图片描述

四、模型应用

这里,我们首先调用 dist.init_process_group() 来初始化分布式训练环境。然后定义了一个简单的线性模型,并使用随机生成的数据进行训练。最后,我们调用 dist.destroy_process_group() 来释放资源。
请注意,这只是一个简单的示例,实际使用中可能需要更复杂的模型和数据。同时,请确保在每个进程中都正确地调用了 torch.distributed.init_process_group(),并根据实际情况设置其他参数。

import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
import os

# 设置环境变量 MASTER_ADDR 和 MASTER_PORT
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29505'
# 设置环境变量 RANK
os.environ['RANK'] = '0'
os.environ['WORLD_SIZE'] = '2'

# 初始化分布式训练环境,尽管系统环境给了world_size为2,但调用给的是1,不冲突
dist.init_process_group(backend='nccl', rank=0,world_size=1)

# 定义线性模型
class LinearModel(nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, x):
        return self.linear(x)

# 创建模型实例
model = LinearModel()

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
model = model.to(torch.device('cuda'))
# 生成随机数据
x = torch.randn(100, 1)
y = 3 * x + 2 + torch.randn(100, 1) * 0.1

# 将数据分发到各个进程
x = x.to(torch.device('cuda'))
y = y.to(torch.device('cuda'))

# 在每个进程上进行训练
for epoch in range(10):
    optimizer.zero_grad()
    outputs = model(x)
    loss = criterion(outputs, y)
    loss.backward()
    optimizer.step()
    print(loss)

# 释放资源
dist.destroy_process_group()

运行结果如下:
在这里插入图片描述

可参考知识:点击这里
可参考知识:点击这里

  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tangjunjun-owen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值