归一化的好处及归一化,标准化的处理方法

转载 2018年04月15日 17:00:59

归一化后有两个好处

1. 提升模型的收敛速度

    如下图,x1的取值为0-2000,而x2的取值为1-5,假如只有这两个特征,对其进行优化时,会得到一个窄长的椭圆形,导致在梯度下降时,梯度的方向为垂直等高线的方向而走之字形路线,这样会使迭代很慢,相比之下,右图的迭代就会很快(理解:也就是步长走多走少方向总是对的,不会走偏)


2.提升模型的精度

    归一化的另一好处是提高精度,这在涉及到一些距离计算的算法时效果显著,比如算法要计算欧氏距离,上图中x2的取值范围比较小,涉及到距离计算时其对结果的影响远比x1带来的小,所以这就会造成精度的损失。所以归一化很有必要,他可以让各个特征对结果做出的贡献相同。

    在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。

    在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。

从经验上说,归一化是让不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。

3. 深度学习中数据归一化可以防止模型梯度爆炸。

常见的数据归一化方法

最常用的是 min-max标准化 和 z-score 标准化。

min-max标准化(Min-max normalization) / 0-1标准化(0-1 normalization) / 线性函数归一化 / 离差标准化

    是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:

     ,其中max为样本数据的最大值,min为样本数据的最小值。

    def Normalization(x):
        return [(float(i)-min(x))/float(max(x)-min(x)) for i in x]

    如果想要将数据映射到[-1,1],则将公式换成:

    x* = x* * 2 -1

    或者进行一个近似

    x* = (x - x_mean)/(x_max - x_min), x_mean表示数据的均值。

    def Normalization2(x):
        return [(float(i)-np.mean(x))/(max(x)-min(x)) for i in x]

    这种方法有一个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义

z-score 标准化(zero-mean normalization)

    最常见的标准化方法就是Z标准化,也是SPSS中最为常用的标准化方法,spss默认的标准化方法就是z-score标准化。

    也叫标准差标准化,这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。

    经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:

    x* = (x - μ ) / σ

    其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

    z-score标准化方法适用于属性A的最大值和最小值未知的情况或有超出取值范围的离群数据的情况。该种归一化方式要求原始数据的分布可以近似为高斯分布,否则归一化的效果会变得很糟糕

    标准化的公式很简单,步骤如下

  1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;
  2.进行标准化处理:
                  zij=(xij-xi)/si
      其中:zij为标准化后的变量值;xij为实际变量值。
  3.将逆指标前的正负号对调。
      标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。

问答

1.问:归一化也就是标准化的一种,比如做一般线性回归的时候,XY轴中只有一个是变量,那请问是否需要对变量数据进行标准归一化呢?

答:一维数据一般没有太大必要归一化,它的归一化相当于通过学习率调节了,但是反过来归一化后,学习率可能就没有太大必要了,这样就可以减少一个学习率的设置。(即学习率初始值的选择需要参考输入的范围,直接将数据归一化,学习率就不必再根据数据范围作调整。)

2.问:为什么线性归一化对用距离来度量相似度的方法在精度上会有影响?

线性变换其协方差产生倍数值的缩放,无法消除量纲对方差、协方差的影响,由于量纲的存在,使用不同的量纲、距离的计算结果会不同,在精度上当然会有影响。使用0均值对方差进行了归一化,这时候每个维度的量纲其实已经等价了。而且用于最大值和最小值未知的时候,或者说最大值和最小值并不准确时尤其重要,当最大值和最小值未知或者不准备时当然在精度上有更大影响,0均值方法这种问题就少很多,对异常点也更鲁棒。

:首先 谢谢博主的耐心解答,

    1.我可不可以理解为线性归一化,不会消除量纲的影响,因为它是一种对原始数据的放缩(根据公式,应该不是等比例的放缩),这种放缩,可能会减小量纲的影响,比如一个量纲为1的特征和一个量纲为100的特征都归一化到0到1之间,差距就没有1到100那么大了,但量纲的不同的依然存在,也就是说,一定程度上减小了量纲的影响,但是还是不能消除,

    2.但是-均值归一化,就是使数据分布一致,完全消除量纲的影响了对吧,但是会改变数据分布。

    3.最后一个疑问就是,是否数据分布一致,量纲就相同。

答:1.所有的归一化方法都会在一定程度上消除量纲的影响,但是zscore还可以消除量纲对方差、协方差的影响(线性的会使方差也变化);

       2.对,zscore会使数据分布都变成高斯分布;

       3.“数据分布一致,量纲就相同”,数据分布相同指完全一样的分布,如均值和方差相同的高斯分布,这时量纲是 相同的。

转载:https://blog.csdn.net/pipisorry/article/details/52247379

归一化(标准化)两种常用方法

归一化(标准化)两种常用方法 数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲...
  • jacke121
  • jacke121
  • 2018-01-08 23:26:06
  • 265

数据处理之标准化/归一化方法

归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。归一化是为了加快训练网络的收敛性,可以不进行归一化处理 归一化的具体作用是归纳统一样本的统计分布性。归一化...
  • zy_zhengyang
  • zy_zhengyang
  • 2015-04-04 14:32:19
  • 8716

模式识别之样本数据归一化(Normalization)与标准化(Standardization)

归一化化定义:我是这样认为的,归一化化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内,因为我们得到的样本数据中可能一个特征向量的某几个元素的值非常大,使得特征数据不在一个数...
  • u011650143
  • u011650143
  • 2017-05-10 12:09:49
  • 2044

数据的规范化,归一化,标准化,正则化

原文地址:数据的规范化,归一化,标准化,正则化作者:打湿井盖     数据的规范化,归一化,标准化,正则化,这几个破词整得我头晕,首先这些词就没规范好,对数据做实验更晕,网上狂搜一阵后,发现...
  • Real_Myth
  • Real_Myth
  • 2017-04-07 18:13:53
  • 1268

归一化与标准化

在机器学习和数据挖掘中,经常会听到两个名词:归一化(Normalization)与标准化(Standardization)。它们具体是什么?带来什么益处?具体怎么用?本文来具体讨论这些问题。 一、是...
  • u012101561
  • u012101561
  • 2017-05-18 20:55:00
  • 2013

归一化、标准化和正则化的关系

归一化(Normalization) 1.把数据变为(0,1)之间的小数。主要是为了方便数据处理,因为将数据映射到0~1范围之内,可以使处理过程更加便捷、快速。 2.把有量纲表达式变换为无量纲表达式,...
  • zyf89531
  • zyf89531
  • 2015-05-22 22:33:33
  • 9328

数据归归一化方法(标准化)

数据归一化方法       数据标准化(normalization)数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。       数据同趋化处理主要解决不同性质数据问题,对不同性质指标...
  • qq_20823641
  • qq_20823641
  • 2016-05-11 08:43:47
  • 14578

数据标准化/归一化normalization

http://blog.csdn.net/pipisorry/article/details/52247379这里主要讲连续型特征归一化的常用方法。离散参考[数据预处理:独热编码(One-Hot En...
  • pipisorry
  • pipisorry
  • 2016-08-19 09:42:40
  • 75055

标准化和归一化

*****************************归一化******************************* 1)把数据变成(0,1)之间的小数 2)把有量纲表达式变成无量纲表达...
  • u014755493
  • u014755493
  • 2017-04-20 09:51:37
  • 704

归一化、标准化区别的通俗说法

所谓“归一”,注意“一”,就是把数据归到(0,1)这个区间内。 常用的方法有: min-max归一化y=(x-min)/(max-min) 所谓“标准”,就是标准正态分布,把数据转换成标准...
  • WhereYouSink
  • WhereYouSink
  • 2017-12-11 19:06:25
  • 393
收藏助手
不良信息举报
您举报文章:归一化的好处及归一化,标准化的处理方法
举报原因:
原因补充:

(最多只允许输入30个字)