python 绘制时频图 plt.specgram

本文详细介绍了时频图的概念,它是如何通过横轴的时间和纵轴的频率来展示信号变化的。使用Matplotlib的specgram函数,可以方便地计算和绘制时频图,参数包括数据x、采样频率Fs、FFT中每个片段的数据点数NFFT等。通过实例展示了如何设置这些参数来观察信号的频率和幅度随时间的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时频图以横轴为时间,纵轴为频率,用颜色表示幅值。在一幅图中表示信号的频率、幅度随时间的变化 

matplotlib.pyplot.specgram(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, 
noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None, scale_by_freq=None, 
mode=None, scale=None, vmin=None, vmax=None, *, data=None, **kwargs)

计算并绘制数据x的时频图。将数据分割成长为NFFT的片段,计算每个片段的频谱。窗函数window应用于每个片段,每个片段的重叠数量由noverlap指定。

参数:

x:1-D数组或序列

Fs:采样频率,默认为2

NFFT:FFT中每个片段的数据点数(窗长度)。默认为256

noverlap:窗之间的重叠长度。默认值是128。

其他参数含义查看官网:https://matplotlib.org/api/_as_gen/matplotlib.pyplot.specgram.html

例子:

plt.specgram(np.random.randn(3000), NFFT=200, Fs=100, noverlap=100)
plt.show()

 

 

 

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值