用普通摄像头测量距离

近年来,由于无人机、无人车等技术的不断成熟,需要用到实时测距的场所也越来越多,如定位,避障,测速等,相比于其他测距方法,单目测距是利用一个摄像头进行视频拍摄,在图像中找到待测物体。这一系列动作,涉及到了物体的识别,相机的结构,坐标变换的一些知识,距离的获取是一个很广泛的课题,用摄像头来测距是其中一个方向,包括单目测距、双目测距、结构光测距等方法。
在这里,我们主要用一个摄像头通过建立一定的模型来解决测距的问题。

1. 安装包

python 3.7 或以上

pip install cvzone
pip install mediapipe

2.成像原理

单目摄像头的模型可以近似考虑为针孔模型,如图所示
在这里插入图片描述

  • f: 焦距
  • W: 目标物体的实际宽度
  • w: 成像后的宽度
  • d: 物体与相机之间的实际距离或深度

f 、d、w、W的之间的关系如下:
d f = W w \frac{d}{f}=\frac{W}{w} fd=wW

2.1 相机校准

我们的目标是计算出目标物体的距离d,但前提需要知道焦距f,焦距f的计算公式如下:
f = w ∗ d W f=\frac{w*d}{W} f=Wwd
我们可以将一个物体放在离摄像头已知的距离d,同时我们知道实际物体的宽度W,以及呈像后的宽度w,从而上述公式计算出焦距f

2.2 计算物体的距离d

相机校准后,焦距f的值即为已知,根据如下公式,可计算出目标物体的距离:
d = f ∗ W w d=\frac{f*W}{w} d=wfW
如果我们知道已知物体的W,和成像后的w,就可以实时计算出目标物体的距离d。

3 案例介绍

在这里插入图片描述
本文以人脸两只眼睛的距离作为目标物体的W, 由于男性两只眼睛距离为64mm,女性两只眼睛距离为62mm ,我们这里取平均值63作为人脸眼睛的距离。因此计算人脸的距离,只需知道成像后的w,即可计算出人脸离摄像头的距离d.

3.1 检测人脸

import cv2
import cvzone
import cvzone.FaceMeshModule import FaceMeshDetector

# 检测人脸
detector=FaceMeshDetector(maxFaces=1)
cap=cv2.VideoCapture(0)

while True:
	success,img =cap.read()
	img,faces=detector.findFaceMesh(img)
	cv2.imshow("Image",img)
	cv2.waitKey(1)

在这里插入图片描述

3.2 计算视频中双眼的距离

import cv2
import cvzone
import cvzone.FaceMeshModule import FaceMeshDetector

# 检测人脸
detector=FaceMeshDetector(maxFaces=1)
cap=cv2.VideoCapture(0)

while True:
	success,img =cap.read()
	img,faces=detector.findFaceMesh(img)
	if faces:
		face =faces[0]
		pointLeft=face[145]     #左眼中心点坐标
		pointRight=face[375]    #右眼中心点坐标
		# 绘制人眼中心点并连线
		cv2.line(img,pointLeft,pointRight,(0,200,0),3)
		cv2.circle(img,pointLeft,5,(255,0,255),cv2.FILLED)
		cv2.circle(img,pointRight,5,(255,0,255),cv2.FILLED)
		w,_=detector.findDistance(pointLeft,pointRight)
		print(w)
			
	cv2.imshow("Image",img)
	cv2.waitKey(1)

在这里插入图片描述

3.3 相机标定:计算焦距f

```python
import cv2
import cvzone
import cvzone.FaceMeshModule import FaceMeshDetector

# 检测人脸
detector=FaceMeshDetector(maxFaces=1)
cap=cv2.VideoCapture(0)

while True:
	success,img =cap.read()
	img,faces=detector.findFaceMesh(img)
	if faces:
		face =faces[0]
		pointLeft=face[145]     #左眼中心点坐标
		pointRight=face[375]    #右眼中心点坐标
		# 绘制人眼中心点并连线
		cv2.line(img,pointLeft,pointRight,(0,200,0),3)
		cv2.circle(img,pointLeft,5,(255,0,255),cv2.FILLED)
		cv2.circle(img,pointRight,5,(255,0,255),cv2.FILLED)
		w,_=detector.findDistance(pointLeft,pointRight)  #保持人脸到摄像头50cm下测量
		# Finding the Focal Length
		W=6.3 # 真实人脸间距 6.3cm
		d= 50 # 保持人脸到摄像头50cm的距离
		f=(w*d)/W
		print(f)
			
	cv2.imshow("Image",img)
	cv2.waitKey(1)

3.4 计算人脸到相机的距离

根据上一步,相机标定的结果。假设计算出相机的焦距f

f =840 mm

根据公式:
d = f ∗ W w d=\frac{f*W}{w} d=wfW
即可计算出实时的人脸到摄像头的距离

import cv2
import cvzone
import cvzone.FaceMeshModule import FaceMeshDetector

# 检测人脸
detector=FaceMeshDetector(maxFaces=1)
cap=cv2.VideoCapture(0)

while True:
	success,img =cap.read()
	img,faces=detector.findFaceMesh(img)
	if faces:
		face =faces[0]
		pointLeft=face[145]     #左眼中心点坐标
		pointRight=face[375]    #右眼中心点坐标
		# 绘制人眼中心点并连线
		cv2.line(img,pointLeft,pointRight,(0,200,0),3)
		cv2.circle(img,pointLeft,5,(255,0,255),cv2.FILLED)
		cv2.circle(img,pointRight,5,(255,0,255),cv2.FILLED)
		w,_=detector.findDistance(pointLeft,pointRight)  #保持人脸到摄像头50cm下测量
		W=6.3 # 真实人脸间距 6.3cm
		# Finding the Focal Length
		# d= 50 # 保持人脸到摄像头50cm的距离
		# f=(w*d)/W
		# print(f)

		# Finding distance
		f = 840  # 根据相机标定的结果
		d = (W * f)/w
		print(d)
		cvzone.putTextRect(img,f'Depth:{int(d)}cm',(face[10][0]-100,face[10][1]-50),scale=2)
			
	cv2.imshow("Image",img)
	cv2.waitKey(1)

在这里插入图片描述

可以看到:人脸靠近相机d越来越小,远离相机d越来越小。从而可以大致判断出人脸离相机的距离。虽然达不到深度相机那么精确,但在某些场景中,该计算出的距离应用起来可以有不错的效果

实现效果:http://v.youku.com/v_show/id_XMTU2Mzk0NjU3Ng==.html 如何在你的电脑上运行这个程序? 1,它需要cvblobslib这一个opencv的扩展库来实现检测物体与给物体画框的功能,具体安装信息请见: http://dsynflo.blogspot.com/2010/02/cvblobskib-with-opencv-installation.html,当你配置好cvblobslib之后,你可以用这一的程序进行测试:http://dl.dropbox.com/u/110310945/Blobs%20test.rar 2,视频中两个摄像头之间的距离是6cm,你可以根据你摄像头的型号,来选择合适的距离来达到最好的效果。 3,在进行测距之前,首先需要对摄像头进行标定,那么如何标定呢? 在stdafx.h中把"#define CALIBRATION 0"改成 “#define CALIBRATION 1”表示进行标定,标定之后,你就可以在工程目录下的"CalibFile" 文件夹中得到标定信息的文件。如果标定效果还不错,你就可以吧"#define CALIBRATION " 改成0,以后就不需要再标定,直接使用上一次的标定信息。你还需要把"#define ANALYSIS_MODE 1"这行代码放到stdafx.h中。 4,视频中使用的是10*7的棋牌格,共摄录40帧来计算摄像头的各种参数,如果你像使用其他棋盘格,可以在 "StereoFunctions.cpp"文件中修改相应参数。 5,如果你无法打开摄像头,可以在 "StereoGrabber.cpp"文件中修改代码“cvCaptureFromCAM(index)”中index的值。 6,About computing distance: it interpolates the relationship between depth-value and real-distance to third degree polynomial. So i used excel file "interpolation" for interpolation to find k1 to k4, you should find your own value of these parameters. 7,你可以通过调整控制窗口中各个参数的滑块,从而来得到更好的视差图。 8,在目录下的”distance“文件夹中,有计算距离信息的matlab代码。 9,如果你想了解基本的理论,可以看一下这个文档:http://scholar.lib.vt.edu/theses/available/etd-12232009-222118/unrestricted/Short_NJ_T_2009.pdf 视频中环境:vs2008,opencv2.1
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值