利用Tensorrt实现int8量化

本文详细介绍了如何使用TensorRT进行int8量化,包括int8量化的优势和步骤,从导出ONNX文件到TensorRT模型的编译和推理。在编译过程中,通过设置BuilderFlag::kINT8进行int8量化,并自定义校准器类进行标定。在模型推理阶段,对输入图像进行预处理并执行推理,最后展示了完整的代码流程。
摘要由CSDN通过智能技术生成

1 介绍

1.1 int 8量化

int8量化是利用int8乘法替换float32乘法实现性能加速的一种方法

  • 1.对于常规的模型有:y=kx+b,此时x,k,b都是float32,对于kx的计算使用float32的乘法
  • 2.对于int8模型有:y=tofp32(toint8(k)toint8(x))+b,其中int8int8结果为int 16
  • 3 因此int8模型解决的问题是如何将float32合理转换为int8(合理的方法包括:KL散度,重新训练等),使得精度损失最小
  • 4 也因此,经过int8量化的精度也会受到影响:官方给出的参考值分类影响比较小1-2个点,检测器可能有3-5个点的降低,这只是参考值,实际情况需要根据自己的测试结果

1.2 int 8量化步骤

Tensorrt里面想要实现int8,主要分为以下4个步骤

  • 1.配置setFlag,通过代码 nvinfer1::BuilderFlag::kINT8,指定BuilderFlag为kINT8,告诉编译器我们的编译模式是int8
  • 2.实现Int8EntropyCalibrator类并继承
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值