文章目录
1. QAT介绍
从 模型量化(5): 敏感层分析可以看出来,对于yolov5-nano模型,对最后一层detect层进行敏感层分析的时候,发现对检测精度的影响比较大。所以在PTQ/QAT在进行量化时,会跳过这些敏感层。
QAT微调的模型,就是PTQ在校准后的模型。从上一小节可以看出如果PTQ中模型训练和量化是分开的,而QAT则是在模型训练时加入了伪量化节点,用于模拟模型量化时引起的误差。
1.1 QAT处理流程
-
- 首先在数据集上以FP32精度进行模型训练,得到训练好的baseline模型;
-
- 在baseline模型中插入伪量化节点,
-
- 进行PTQ得到PTQ后的模型;
本文介绍了模型量化中的QAT(量化感知训练)方法,特别是在YOLOv5-nano模型上的应用。QAT首先在FP32精度下训练模型,然后插入伪量化节点,进行量化感知训练,以提升量化后的模型精度。相比于PTQ,QAT能更好地保持模型性能,但需要额外的训练步骤。文章详细阐述了QAT的流程、精度提升、与PTQ的优缺点对比,并提供了环境安装和代码实现的指导。
订阅专栏 解锁全文
1052

被折叠的 条评论
为什么被折叠?



