模型量化(7):Yolov5 QAT量化训练

本文介绍了模型量化中的QAT(量化感知训练)方法,特别是在YOLOv5-nano模型上的应用。QAT首先在FP32精度下训练模型,然后插入伪量化节点,进行量化感知训练,以提升量化后的模型精度。相比于PTQ,QAT能更好地保持模型性能,但需要额外的训练步骤。文章详细阐述了QAT的流程、精度提升、与PTQ的优缺点对比,并提供了环境安装和代码实现的指导。

1. QAT介绍

模型量化(5): 敏感层分析可以看出来,对于yolov5-nano模型,对最后一层detect层进行敏感层分析的时候,发现对检测精度的影响比较大。所以在PTQ/QAT在进行量化时,会跳过这些敏感层。

QAT微调的模型,就是PTQ在校准后的模型。从上一小节可以看出如果PTQ中模型训练和量化是分开的,而QAT则是在模型训练时加入伪量化节点,用于模拟模型量化时引起的误差

1.1 QAT处理流程

    1. 首先在数据集上以FP32精度进行模型训练,得到训练好的baseline模型;
    1. 在baseline模型中插入伪量化节点,
    1. 进行PTQ得到PTQ后的模型;
    <
Yolov5 QAT(Quantization-Aware Training)是一种量化感知训练的技术,用于将深度学习模型量化为低精度表示,以减少模型的存储空间和计算需求,同时保持模型在推理阶段的准确性。在Yolov5中,QAT可以应用于训练过程中,以便更好地适应量化后的推理。 量化感知训练的基本思想是在训练过程中模拟量化操作,并通过添加训练过程中的损失来约束模型量化行为。具体而言,在QAT中,模型的权重和激活值被表示为低比特位数(如8位)的定点数,而不是传统的浮点数。这样做可以大幅减少模型所需的存储和计算资源。 量化感知训练可以通过以下步骤来实现: 1. 定义量化策略:确定权重和激活值的量化位数,以及量化时采用的量化方法(如线性量化或对称量化)。 2. 量化仿真:在训练过程中,在权重和激活值上应用量化操作,将它们转换为低比特位数的定点数。这可以通过将浮点数四舍五入到最接近的定点数来实现。 3. 计算量化损失:在模型的前向传播过程中,通过添加量化损失来约束量化后的模型与原始浮点模型之间的差异。量化损失可以使用各种度量方法来计算,如均方根误差(RMSE)或KL散度。 4. 反向传播和参数更新:通过反向传播计算梯度并更新模型的参数,以最小化总体损失,包括量化损失和传统的分类或回归损失。 通过这些步骤,量化感知训练可以使模型在推理阶段保持较高的准确性,并显著减少模型的存储和计算需求。这对于在资源有限的设备上部署深度学习模型非常有用。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值