目标检测:FP(误检)和FN(漏检)统计

本文介绍了在目标检测中如何统计误检(FP)和漏检(FN)。通过将数据转换为YOLO格式,训练模型,然后在测试集上进行预测,分析预测结果与真实标签的对比,从而得出FP和FN。使用特定脚本可以可视化这些错误并统计每个图片的错误数量,帮助提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 介绍

目标检测,检测结果分为三类:TP(正确检测),FP(误检),FN(漏检), 尤其是针对复杂场景或者小目标检测场景中,会存在一些FP(误检),FN(漏检)。

如何对检测的效果进行可视化,以帮助我们改进模型,提高模型recall值。

步骤

  • (1): 数据需要准备为yolo格式
  • (2) 训练数据获得模型model
  • (3) 利用训练的模型再测试集上预测,获得pred
  • (4) 根据测试集的标签label与pred结果,分析FPFN

在这里插入图片描述

2.数据准备

数据需要处理为yolo格式, 即每图片对应一个.txt的label信息,训练后的label也是每张图片对应.txt文件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值