pytorch 减小显存消耗,优化显存使用,避免out of memory

本文是整理了大神的两篇博客:

如何计算模型以及中间变量的显存占用大小:

https://oldpan.me/archives/how-to-calculate-gpu-memory

如何在Pytorch中精细化利用显存:

https://oldpan.me/archives/how-to-use-memory-pytorch

还有知乎中大神的解答:

https://zhuanlan.zhihu.com/p/31558973

ppt

https://www.zhihu.com/question/67209417

在说之前先推荐一个实时监控内存显存使用的小工具:

sudo apt-get install htop

监控内存(-d为更新频率,下为每0.1s更新一次):

htop -d=0.1

监控显存(-n为更新频率,下为每0.1s更新一次):

watch -n 0.1 nvidia-smi

1.问题陈述:

torch.FatalError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1524590031827/work/aten/src/THC/generic/THCStorage.cu:58
   
   

令人窒息的显存溢出,有时是沉默式gg,不动声色的就溢出没有了。。原因是:

显存装不下模型权重+中间变量

优化方法:及时清空中间变量,优化代码,减少batch

2.显存消耗计算方法:

先看看我们使用的pytorch数据格式:


平时训练中使用的多是float32 和 int32。

32位的单精度浮点型占用空间为4B,

那么一个batch在网络开始比如说是16×3×224×224,那么所占用的显存也就是16×3×224×224×4B = 9.1875MB

到了网络后期比如说是16×512×14*14,所占用的显存也就是16×512×14×14×4B = 6.125MB

即使是256的batch_size,也就是147MB,整个网络如果是19层,为2.728GB,并没有到咱们至少8G的显存。

显存消耗的幕后黑手其实是神经网络中的中间变量以及使用optimizer算法时产生的巨量的中间参数。

显存占用 = 模型参数 + 计算产生的中间变量

以VGG16为例:

原文博主注意到上图中在计算的时候默认的数据格式是8-bit而不是32-bit,所以最后的结果要乘上一个4,即552mb。

其实只要一计算,就可以知道当batch_size是256时,中间变量所产生的参数量是有多庞大。。。

反向传播时,中间变量+原来保存的中间变量,存储量会翻倍。

而且有些适用于移动端的网络mobilenet等,计算量是变少了,但对显存占用变大了,原因就是中间参数存储增加了

3.代码计算显存占用:

计算模型权重及中间变量占用大小:


   
   
  1. # 模型显存占用监测函数
  2. # model:输入的模型
  3. # input:实际中需要输入的Tensor变量
  4. # type_size 默认为 4 默认类型为 float32
  5. def modelsize(model, input, type_size=4):
  6. para = sum([np.prod(list(p.size())) for p in model.parameters()])
  7. print( 'Model {} : params: {:4f}M'.format(model._get_name(), para * type_size / 1000 / 1000))
  8. input_ = input.clone()
  9. input_.requires_grad_(requires_grad= False)
  10. mods = list(model.modules())
  11. out_sizes = []
  12. for i in range( 1, len(mods)):
  13. m = mods[i]
  14. if isinstance(m, nn.ReLU):
  15. if m.inplace:
  16. continue
  17. out = m(input_)
  18. out_sizes.append(np.array(out.size()))
  19. input_ = out
  20. total_nums = 0
  21. for i in range(len(out_sizes)):
  22. s = out_sizes[i]
  23. nums = np.prod(np.array(s))
  24. total_nums += nums
  25. print( 'Model {} : intermedite variables: {:3f} M (without backward)'
  26. .format(model._get_name(), total_nums * type_size / 1000 / 1000))
  27. print( 'Model {} : intermedite variables: {:3f} M (with backward)'
  28. .format(model._get_name(), total_nums * type_size* 2 / 1000 / 1000))
实际消耗会大一些,因为有框架消耗。

4.其他方法:

a. inplace替换:

我们都知道激活函数Relu()有一个默认参数inplace,默认设置为False,当设置为True时,我们在通过relu()计算时的得到的新值不会占用新的空间而是直接覆盖原来的值,这也就是为什么当inplace参数设置为True时可以节省一部分内存的缘故。

b. 用del一遍计算一边清除中间变量。

c. 用checkpoint牺牲计算速度:

Pytorch-0.4.0出来了一个新的功能,可以将一个计算过程分成两半,也就是如果一个模型需要占用的显存太大了,我们就可以先计算一半,保存后一半需要的中间结果,然后再计算后一半。

也就是说,新的checkpoint允许我们只存储反向传播所需要的部分内容。如果当中缺少一个输出(为了节省内存而导致的),checkpoint将会从最近的检查点重新计算中间输出,以便减少内存使用(当然计算时间增加了):


   
   
  1. # 首先设置输入的input=>requires_grad=True
  2. # 如果不设置可能会导致得到的gradient为0
  3. input = torch.rand( 1, 10, requires_grad= True)
  4. layers = [nn.Linear( 10, 10) for _ in range( 1000)]
  5. # 定义要计算的层函数,可以看到我们定义了两个
  6. # 一个计算前500个层,另一个计算后500个层
  7. def run_first_half(*args):
  8. x = args[ 0]
  9. for layer in layers[: 500]:
  10. x = layer(x)
  11. return x
  12. def run_second_half(*args):
  13. x = args[ 0]
  14. for layer in layers[ 500: -1]:
  15. x = layer(x)
  16. return x
  17. # 我们引入新加的checkpoint
  18. from torch.utils.checkpoint import checkpoint
  19. x = checkpoint(run_first_half, input)
  20. x = checkpoint(run_second_half, x)
  21. # 最后一层单独调出来执行
  22. x = layers[ -1](x)
  23. x.sum.backward() # 这样就可以了

对于Sequential-model来说,因为Sequential()中可以包含很多的block,所以官方提供了另一个功能包:


   
   
  1. input = torch.rand( 1, 10, requires_grad= True)
  2. layers = [nn.Linear( 10, 10) for _ in range( 1000)]
  3. model = nn.Sequential(*layers)
  4. from torch.utils.checkpoint import checkpoint_sequential
  5. # 分成两个部分
  6. num_segments = 2
  7. x = checkpoint_sequential(model, num_segments, input)
  8. x.sum().backward() # 这样就可以了

d.减小batch_size, 避免用全连接,多用下采样。

e. torch.backends.cudnn.benchmark = True 在程序刚开始加这条语句可以提升一点训练速度,没什么额外开销。

f. 因为每次迭代都会引入点临时变量,会导致训练速度越来越慢,基本呈线性增长。开发人员还不清楚原因,但如果周期性的使用torch.cuda.empty_cache()的话就可以解决这个问题。

5.显存跟踪:

开头链接的博主开发了一个库:pynvml(Nvidia的Python环境库和Python的垃圾回收工具)

可以实时地打印我们使用的显存以及哪些Tensor使用了我们的显存

https://github.com/Oldpan/Pytorch-Memory-Utils


   
   
  1. import datetime
  2. import linecache
  3. import os
  4. import gc
  5. import pynvml
  6. import torch
  7. import numpy as np
  8. print_tensor_sizes = True
  9. last_tensor_sizes = set()
  10. gpu_profile_fn = f'{datetime.datetime.now():%d-%b-%y-%H:%M:%S}-gpu_mem_prof.txt'
  11. # if 'GPU_DEBUG' in os.environ:
  12. # print('profiling gpu usage to ', gpu_profile_fn)
  13. lineno = None
  14. func_name = None
  15. filename = None
  16. module_name = None
  17. # fram = inspect.currentframe()
  18. # func_name = fram.f_code.co_name
  19. # filename = fram.f_globals["__file__"]
  20. # ss = os.path.dirname(os.path.abspath(filename))
  21. # module_name = fram.f_globals["__name__"]
  22. def gpu_profile(frame, event):
  23. # it is _about to_ execute (!)
  24. global last_tensor_sizes
  25. global lineno, func_name, filename, module_name
  26. if event == 'line':
  27. try:
  28. # about _previous_ line (!)
  29. if lineno is not None:
  30. pynvml.nvmlInit()
  31. # handle = pynvml.nvmlDeviceGetHandleByIndex(int(os.environ['GPU_DEBUG']))
  32. handle = pynvml.nvmlDeviceGetHandleByIndex( 0)
  33. meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
  34. line = linecache.getline(filename, lineno)
  35. where_str = module_name+ ' '+func_name+ ':'+ ' line '+str(lineno)
  36. with open(gpu_profile_fn, 'a+') as f:
  37. f.write( f"At {where_str:<50}"
  38. f"Total Used Memory:{meminfo.used/1024**2:<7.1f}Mb\n")
  39. if print_tensor_sizes is True:
  40. for tensor in get_tensors():
  41. if not hasattr(tensor, 'dbg_alloc_where'):
  42. tensor.dbg_alloc_where = where_str
  43. new_tensor_sizes = {(type(x), tuple(x.size()), np.prod(np.array(x.size()))* 4/ 1024** 2,
  44. x.dbg_alloc_where) for x in get_tensors()}
  45. for t, s, m, loc in new_tensor_sizes - last_tensor_sizes:
  46. f.write( f'+ {loc:<50} {str(s):<20} {str(m)[:4]} M {str(t):<10}\n')
  47. for t, s, m, loc in last_tensor_sizes - new_tensor_sizes:
  48. f.write( f'- {loc:<50} {str(s):<20} {str(m)[:4]} M {str(t):<10}\n')
  49. last_tensor_sizes = new_tensor_sizes
  50. pynvml.nvmlShutdown()
  51. # save details about line _to be_ executed
  52. lineno = None
  53. func_name = frame.f_code.co_name
  54. filename = frame.f_globals[ "__file__"]
  55. if (filename.endswith( ".pyc") or
  56. filename.endswith( ".pyo")):
  57. filename = filename[: -1]
  58. module_name = frame.f_globals[ "__name__"]
  59. lineno = frame.f_lineno
  60. return gpu_profile
  61. except Exception as e:
  62. print( 'A exception occured: {}'.format(e))
  63. return gpu_profile
  64. def get_tensors():
  65. for obj in gc.get_objects():
  66. try:
  67. if torch.is_tensor(obj):
  68. tensor = obj
  69. else:
  70. continue
  71. if tensor.is_cuda:
  72. yield tensor
  73. except Exception as e:
  74. print( 'A exception occured: {}'.format(e))
需要注意的是,linecache中的getlines只能读取缓冲过的文件,如果这个文件没有运行过则返回无效值。Python 的垃圾收集机制会在变量没有应引用的时候立马进行回收,但是为什么模型中计算的中间变量在执行结束后还会存在呢。既然都没有引用了为什么还会占用空间?
一种可能的情况是这些引用不在Python代码中,而是在神经网络层的运行中为了backward被保存为gradient,这些引用都在计算图中,我们在程序中是无法看到的。

转载地址:https://blog.csdn.net/qq_28660035/article/details/80688427

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值