【连续介质力学】向量

向量的代数操作

加法

a ⃗ \vec a a , b ⃗ \vec b b 为任意向量
c ⃗ = a ⃗ + b ⃗ = b ⃗ + a ⃗ \vec c = \vec a + \vec b = \vec b + \vec a c =a +b =b +a

减法

d ⃗ = a ⃗ − + b ⃗ \vec d= \vec a-+ \vec b d =a +b

在这里插入图片描述

标量乘法

λ a ⃗ \lambda \vec a λa , 与 a ⃗ \vec a a 相同的方向,但长度和指向可能不同
在这里插入图片描述

点积

γ = a ⃗ ⋅ b ⃗ = ∣ ∣ a ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ cos ⁡ θ \gamma = \vec a \cdot \vec b = ||\vec a|| ||\vec b|| \cos \theta γ=a b =∣∣a ∣∣∣∣b ∣∣cosθ
如果 a ⃗ = b ⃗ \vec a = \vec b a =b ,
a ⃗ ⋅ a ⃗ = ∣ ∣ a ⃗ ∣ ∣ ∣ ∣ a ⃗ ∣ ∣ cos ⁡ θ = ∣ ∣ a ⃗ ∣ ∣ 2 \vec a \cdot \vec a = ||\vec a || || \vec a || \cos \theta = ||\vec a||^2 a a =∣∣a ∣∣∣∣a ∣∣cosθ=∣∣a 2
因此, ∣ ∣ a ⃗ ∣ ∣ = a ⃗ ⋅ a ⃗ ||\vec a|| = \sqrt{\vec a \cdot \vec a} ∣∣a ∣∣=a a

单位向量

a ^ \hat a a^ a ⃗ \vec a a 的单位向量,有相同方向,但长度为1
a ^ = a ⃗ ∣ ∣ a ⃗ ∣ ∣ \hat a = \frac{\vec a}{||\vec a||} a^=∣∣a ∣∣a
因此, ∣ ∣ a ^ ∣ ∣ = 1 ||\hat a|| = 1 ∣∣a^∣∣=1

零向量

0 ⃗ \vec 0 0

投影向量

向量 a ⃗ \vec a a 投影到 b ⃗ \vec b b 上:
p r o j b ⃗ → a ⃗ = ∣ ∣ p r o j b ⃗ a ⃗ ∣ ∣ b ^ \overrightarrow{proj_{\vec b}}\vec a = ||proj_{\vec b}\vec a||\hat b projb a =∣∣projb a ∣∣b^

∣ ∣ p r o j b ⃗ a ⃗ ∣ ∣ ||proj_{\vec b}\vec a|| ∣∣projb a ∣∣可以通过点积得到:
∣ ∣ p r o j b ⃗ a ⃗ ∣ ∣ = a ⃗ ⋅ b ^ ||proj_{\vec b}\vec a|| = \vec a \cdot \hat b ∣∣projb a ∣∣=a b^
所以,代入 b ^ = b ⃗ ∣ ∣ b ⃗ ∣ ∣ \hat b = \frac{\vec b}{||\vec b||} b^=∣∣b ∣∣b
∣ ∣ p r o j b ⃗ a ⃗ ∣ ∣ = a ⃗ ⋅ b ⃗ ∣ ∣ b ⃗ ∣ ∣ ||proj_{\vec b}\vec a|| = \vec a \cdot \frac{\vec b}{||\vec b||} ∣∣projb a ∣∣=a ∣∣b ∣∣b
上式代入到投影向量
p r o j b ⃗ → a ⃗ = a ⃗ ⋅ b ⃗ ∣ ∣ b ⃗ ∣ ∣ b ^ = a ⃗ ⋅ b ⃗ ∣ ∣ b ⃗ ∣ ∣ b ⃗ ∣ ∣ b ⃗ ∣ ∣ = a ⃗ ⋅ b ⃗ ∣ ∣ b ⃗ ∣ ∣ 2 b ⃗ \overrightarrow{proj_{\vec b}}\vec a = \vec a \cdot \frac{\vec b}{||\vec b||}\hat b = \vec a \cdot \frac{\vec b}{||\vec b||} \frac{\vec b}{||\vec b||} = \frac{\vec a \cdot \vec b}{||\vec b||^2} \vec b projb a =a ∣∣b ∣∣b b^=a ∣∣b ∣∣b ∣∣b ∣∣b =∣∣b 2a b b

在这里插入图片描述

两个向量之间的正交性

如果两个向量正交,点积为零
a ⃗ ⋅ b ⃗ = 0 \vec a \cdot \vec b = 0 a b =0

向量积(叉积)

两个向量 a ⃗ , b ⃗ \vec a, \vec b a ,b 的叉积得到一个向量 c ⃗ \vec c c ,这个向量垂直于 a ⃗ , b ⃗ \vec a, \vec b a ,b 所在的平面

  • 表示: c ⃗ = a ⃗ ∧ b ⃗ = b ⃗ ∧ c ⃗ \vec c = \vec a \wedge \vec b = \vec b \wedge \vec c c =a b =b c
  • 如果 c ⃗ \vec c c 垂于于 a ⃗ , b ⃗ \vec a, \vec b a ,b c ⃗ ⋅ a ⃗ = c ⃗ ⋅ b ⃗ = 0 \vec c \cdot \vec a = \vec c \cdot \vec b = 0 c a =c b =0
  • c ⃗ \vec c c 的大小: ∣ ∣ c ⃗ ∣ ∣ = ∣ ∣ a ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ sin ⁡ θ ||\vec c|| = ||\vec a|| ||\vec b|| \sin \theta ∣∣c ∣∣=∣∣a ∣∣∣∣b ∣∣sinθ

几何上 a ⃗ ∧ b ⃗ \vec a \wedge \vec b a b 的大小 表示成 a ⃗ , b ⃗ \vec a, \vec b a ,b 构成的平行四边形的面积
A = ∣ ∣ a ⃗ ∧ b ⃗ ∣ ∣ A = ||\vec a \wedge \vec b|| A=∣∣a b ∣∣
在这里插入图片描述

标量三重积(混合积), Scalar Triple Product(Mixes Product)

三个任意向量 a ⃗ , b ⃗ , c ⃗ \vec a, \vec b, \vec c a ,b ,c , 混合积:
a ⃗ ⋅ ( b ⃗ ∧ c ⃗ ) = b ⃗ ⋅ ( c ⃗ ∧ a ⃗ ) = c ⃗ ⋅ ( a ⃗ ∧ b ⃗ ) = V \vec a \cdot (\vec b \wedge \vec c) = \vec b \cdot (\vec c \wedge \vec a) = \vec c \cdot (\vec a \wedge \vec b) = V a (b c )=b (c a )=c (a b )=V
− a ⃗ ⋅ ( c ⃗ ∧ b ⃗ ) = − b ⃗ ⋅ ( a ⃗ ∧ c ⃗ = − c ⃗ ⋅ ( b ⃗ ∧ a ⃗ ) = V -\vec a \cdot (\vec c \wedge \vec b) = - \vec b \cdot (\vec a \wedge \vec c = - \vec c \cdot (\vec b \wedge \vec a) = V a (c b )=b (a c =c (b a )=V

几何上,混合积V表示三个向量 a ⃗ , b ⃗ , c ⃗ \vec a, \vec b, \vec c a ,b ,c 的平行六面体的体积
在这里插入图片描述

如果其中两个向量线性相关,则混合积为0:
a ⃗ ⋅ ( b ⃗ ∧ a ⃗ ) = 0 ⃗ \vec a \cdot (\vec b \wedge \vec a) = \vec 0 a (b a )=0

性质:
( α a ⃗ + β b ⃗ ) ⋅ ( c ⃗ ∧ d ⃗ ) = α a ⃗ ⋅ ( c ⃗ ∧ d ⃗ ) + β b ⃗ ⋅ ( c ⃗ ∧ d ⃗ ) (\alpha \vec a + \beta \vec b) \cdot (\vec c \wedge \vec d) = \alpha \vec a \cdot (\vec c \wedge \vec d) + \beta \vec b \cdot (\vec c \wedge \vec d) (αa +βb )(c d )=αa (c d )+βb (c d )

NOTE:
其他作者会写成:
[ a ⃗ , b ⃗ , c ⃗ ] = a ⃗ ⋅ ( b ⃗ ∧ c ⃗ ) [\vec a, \vec b, \vec c] = \vec a \cdot (\vec b \wedge \vec c) [a ,b ,c ]=a (b c )
[ b ⃗ , c ⃗ , a ⃗ ] = b ⃗ ⋅ ( c ⃗ ∧ a ⃗ ) [\vec b, \vec c, \vec a] = \vec b \cdot (\vec c \wedge \vec a) [b ,c ,a ]=b (c a )
[ c ⃗ , a ⃗ , b ⃗ ] = c ⃗ ⋅ ( a ⃗ ∧ b ⃗ ) [\vec c, \vec a, \vec b] = \vec c \cdot (\vec a \wedge \vec b) [c ,a ,b ]=c (a b )

向量三重积

w ⃗ = a ⃗ ∧ ( b ⃗ ∧ c ⃗ ) \vec w = \vec a \wedge (\vec b \wedge \vec c) w =a (b c )
可以证明以下关系:
w ⃗ = a ⃗ ∧ ( b ⃗ ∧ c ⃗ ) = − c ⃗ ∧ ( a ⃗ ∧ b ⃗ ) = c ⃗ ∧ ( b ⃗ ∧ a ⃗ ) = ( a ⃗ ⋅ c ⃗ ) b ⃗ − ( a ⃗ ⋅ b ⃗ ) c ⃗ \vec w = \vec a \wedge (\vec b \wedge \vec c) = - \vec c \wedge (\vec a \wedge \vec b) = \vec c \wedge (\vec b \wedge \vec a) = (\vec a \cdot \vec c)\vec b - (\vec a \cdot \vec b)\vec c w =a (b c )=c (a b )=c (b a )=(a c )b (a b )c

w ⃗ \vec w w 位于由 b ⃗ , c ⃗ \vec b, \vec c b ,c 构成的平面 Π 1 \Pi_1 Π1
在这里插入图片描述

问题1.1 a ⃗ , b ⃗ \vec a, \vec b a ,b 是任意向量,证明以下关系为真: ( a ⃗ ∧ b ⃗ ) ⋅ ( a ⃗ ∧ b ⃗ ) = ( a ⃗ ⋅ b ⃗ ) ( a ⃗ ⋅ b ⃗ ) − ( a ⃗ ⋅ b ⃗ ) 2 (\vec a \wedge \vec b) \cdot (\vec a \wedge \vec b) = (\vec a \cdot \vec b) (\vec a \cdot \vec b) - (\vec a \cdot \vec b)^2 (a b )(a b )=(a b )(a b )(a b )2

在这里插入图片描述

线性变换

u ⃗ , v ⃗ \vec u, \vec v u ,v 是任意向量, α \alpha α是标量,F是线性变换:

  • F ( u ⃗ + v ⃗ ) = F ( u ⃗ ) + F ( v ⃗ ) F(\vec u + \vec v) = F(\vec u) + F(\vec v) F(u +v )=F(u )+F(v )
  • F ( α u ⃗ ) = α F ( u ⃗ ) F(\alpha \vec u) = \alpha F(\vec u) F(αu )=αF(u )

问题1.2 给定函数 σ ( ϵ ) = E ϵ \sigma(\epsilon) = E \epsilon σ(ϵ)=Eϵ ψ ( ϵ ) = 1 2 E ϵ 2 \psi(\epsilon) = \frac{1}{2}E\epsilon^2 ψ(ϵ)=21Eϵ2, 证明以上给定的函数是否是线性变换

在这里插入图片描述

坐标系

张量独立于坐标系,具有物理意义
在这里插入图片描述
a ⃗ \vec a a 是一阶张量,在一个通用的坐标系, ξ 1 , ξ 2 , ξ 3 \xi_1, \xi_2, \xi_3 ξ1,ξ2,ξ3可以表示成 ( a 1 , a 2 , a 3 ) (a_1, a_2, a_3) (a1,a2,a3)
在这里插入图片描述

笛卡尔坐标系

笛卡尔坐标系由单元向量 i ⃗ , j ⃗ , k ⃗ \vec i, \vec j, \vec k i ,j ,k 定义, 正交基,有以下性质:

  1. 单位向量:
    ∣ ∣ i ⃗ ∣ ∣ = ∣ ∣ j ⃗ ∣ ∣ = ∣ ∣ k ⃗ ∣ ∣ = 1 ||\vec i|| = ||\vec j|| = ||\vec k|| = 1 ∣∣i ∣∣=∣∣j ∣∣=∣∣k ∣∣=1
  2. 单位向量相互正交:
    i ⃗ ⋅ j ⃗ = j ⃗ ⋅ k ⃗ = k ⃗ ⋅ i ⃗ = 0 \vec i \cdot \vec j = \vec j \cdot \vec k = \vec k \cdot \vec i = 0 i j =j k =k i =0
  3. 向量之间的叉积满足:
    i ⃗ ∧ j ⃗ = k ⃗ ; j ⃗ ∧ k ⃗ = i ⃗ ; k ⃗ ∧ i ⃗ = j ⃗ ; \vec i \wedge \vec j = \vec k; \vec j \wedge \vec k = \vec i; \vec k \wedge \vec i = \vec j; i j =k ;j k =i ;k i =j ;

在这里插入图片描述

笛卡尔坐标系下的向量表示

a ⃗ \vec a a 在笛卡尔坐标系下的元素为 ( a x , a y , a z ) (a_x, a_y, a_z) (ax,ay,az),并且笛卡儿基 ( i ⃗ , j ⃗ , k ⃗ ) (\vec i, \vec j, \vec k) (i ,j ,k ),表示为:
a ⃗ = a x i ⃗ + a y j ⃗ + a z k ⃗ \vec a = a_x \vec i + a_y \vec j + a_z \vec k a =axi +ayj +azk
在这里插入图片描述
在笛卡尔坐标系下描述向量操作:

  • 点积:
    a ⃗ ⋅ b ⃗ = ( a x i ^ + a y j ^ + a z k ^ ) ⋅ ( b x i ^ + b y j ^ + b z k ^ ) = a x b x = a y b y + a z b z \vec a \cdot \vec b = (a_x \hat i + a_y \hat j + a_z \hat k) \cdot (b_x \hat i + b_y \hat j + b_z \hat k) = a_x b _x = a_y b _y + a_z b_z a b =(axi^+ayj^+azk^)(bxi^+byj^+bzk^)=axbx=ayby+azbz
    NOTE: 向量在y方向的投影可以用点积
    a ⃗ ⋅ j ^ = ( a x i ^ + a y j ^ + a z k ^ ) ⋅ ( j ^ ) = a y \vec a \cdot \hat j = (a_x \hat i + a_y \hat j + a_z \hat k) \cdot (\hat j) = a_y a j^=(axi^+ayj^+azk^)(j^)=ay

  • 向量范数: ∣ ∣ a ⃗ ∣ ∣ = a x 2 + a y 2 + a z 2 ||\vec a|| = \sqrt{a_x^2 + a_y^2 + a_z^2} ∣∣a ∣∣=ax2+ay2+az2

  • 向量的单位向量: a ^ = a ⃗ ∣ ∣ a ⃗ ∣ ∣ = a x a x 2 + a y 2 + a z 2 i ^ + a y a x 2 + a y 2 + a z 2 j ^ + a z a x 2 + a y 2 + a z 2 k ^ \hat a = \frac{\vec a}{||\vec a||} = \frac{a_x}{\sqrt{a_x^2 + a_y^2 + a_z^2}}\hat i + \frac{a_y}{\sqrt{a_x^2 + a_y^2 + a_z^2}}\hat j + \frac{a_z}{\sqrt{a_x^2 + a_y^2 + a_z^2}}\hat k a^=∣∣a ∣∣a =ax2+ay2+az2 axi^+ax2+ay2+az2 ayj^+ax2+ay2+az2 azk^

  • 零向量: 0 ⃗ = 0 i ^ + 0 j ^ + 0 k ^ \vec 0 = 0 \hat i + 0\hat j +0\hat k 0 =0i^+0j^+0k^

  • 加法:
    a ⃗ + b ⃗ = ( a x i ^ + a y j ^ + a z k ^ ) + ( b x i ^ + b y j ^ + b z k ^ ) = ( a x + b x ) i ^ + ( a y + b y ) j ^ + ( a z + b z ) k ^ \vec a + \vec b = (a_x \hat i + a_y \hat j + a_z \hat k) + (b_x \hat i + b_y \hat j + b_z \hat k) = (a_x + b_x) \hat i + (a_y + b_y) \hat j + (a_z + b_z) \hat k a +b =(axi^+ayj^+azk^)+(bxi^+byj^+bzk^)=(ax+bx)i^+(ay+by)j^+(az+bz)k^

  • 减法:
    a ⃗ − b ⃗ = ( a x i ^ + a y j ^ + a z k ^ ) − ( b x i ^ + b y j ^ + b z k ^ ) = ( a x − b x ) i ^ + ( a y − b y ) j ^ + ( a z − b z ) k ^ \vec a - \vec b = (a_x \hat i + a_y \hat j + a_z \hat k) - (b_x \hat i + b_y \hat j + b_z \hat k) = (a_x - b_x) \hat i + (a_y - b_y) \hat j + (a_z - b_z) \hat k a b =(axi^+ayj^+azk^)(bxi^+byj^+bzk^)=(axbx)i^+(ayby)j^+(azbz)k^

  • 标量乘积: λ a ⃗ = λ a x i ^ + λ a y j ^ + λ a z k ^ \lambda \vec a = \lambda a_x \hat i + \lambda a_y \hat j + \lambda a_z\hat k λa =λaxi^+λayj^+λazk^

  • 向量积:
    c ⃗ = a ⃗ ∧ b ⃗ = ∣ i ^ j ^ k ^ a x a y a z b x b y b z ∣ = ∣ a y a z b y b z ∣ i ^ − ∣ a x a z b x b z ∣ j ^ + ∣ a x a y b x b y ∣ k ^ = ( a y b z − a z b y ) i ^ + ( a x b z − a z b x ) j ^ + ( a x b y − a y b x ) k ^ \vec c = \vec a \wedge \vec b = \begin{vmatrix} \hat i& \hat j & \hat k\\ a_x &a_y & a_z\\ b_x &b_y & b_z \end{vmatrix} = \begin{vmatrix} a_y & a_z\\ b_y & b_z \end{vmatrix} \hat i- \begin{vmatrix} a_x & a_z\\ b_x & b_z \end{vmatrix} \hat j + \begin{vmatrix} a_x & a_y\\ b_x & b_y \end{vmatrix} \hat k \\ = (a_yb_z - a_z b_y) \hat i + (a_xb_z - a_z b_x) \hat j + (a_xb_y - a_y b_x) \hat k c =a b = i^axbxj^aybyk^azbz = aybyazbz i^ axbxazbz j^+ axbxayby k^=(aybzazby)i^+(axbzazbx)j^+(axbyaybx)k^

  • 标量三重积:
    V ( a ⃗ , b ⃗ , c ⃗ ) = a ⃗ ⋅ ( b ⃗ ∧ c ⃗ ) = b ⃗ ⋅ ( c ⃗ ∧ a ⃗ ) = c ⃗ ⋅ ( a ⃗ ∧ b ⃗ ) = ∣ a x a y a z b x b y b z c x c y c z ∣ = a x ∣ b y b z c y c z ∣ − a y ∣ b x b z c x c z ∣ + a z ∣ b x b y c x c y ∣ = a x ( b y c z − b z c y ) + a y ( b x c z − b z c x ) + a z ( b x c y − b y c x ) V(\vec a, \vec b, \vec c) = \vec a \cdot (\vec b \wedge \vec c) = \vec b \cdot (\vec c \wedge \vec a) = \vec c \cdot (\vec a \wedge \vec b) = \begin{vmatrix} a_x &a_y & a_z\\ b_x &b_y & b_z\\ c_x & c_y & c_z \end{vmatrix} \\ = a_x \begin{vmatrix} b_y & b_z\\ c_y & c_z \end{vmatrix} - a_y \begin{vmatrix} b_x & b_z\\ c_x & c_z \end{vmatrix} + a_z \begin{vmatrix} b_x & b_y\\ c_x & c_y \end{vmatrix} \\ =a_x (b_yc_z - b_z c_y) +a_y(b_xc_z - b_z c_x) +a_z (b_xc_y - b_y c_x) V(a ,b ,c )=a (b c )=b (c a )=c (a b )= axbxcxaybycyazbzcz =ax bycybzcz ay bxcxbzcz +az bxcxbycy =ax(byczbzcy)+ay(bxczbzcx)+az(bxcybycx)

  • 向量三重积:
    a ⃗ ∧ ( b ⃗ ∧ c ⃗ ) = ( a ⃗ ⋅ c ⃗ ) b ⃗ − ( a ⃗ ⋅ b ⃗ ) c ⃗ = ( λ 1 b x − λ 2 c x ) i ^ + ( λ 1 b y − λ 2 c y ) j ^ + ( λ 1 b z − λ 2 c z ) k ^ \vec a \wedge (\vec b \wedge \vec c) = (\vec a \cdot \vec c)\vec b - (\vec a \cdot \vec b)\vec c = (\lambda_1 b_x - \lambda_2 c_x)\hat i + (\lambda_1 b_y - \lambda_2 c_y)\hat j + (\lambda_1 b_z - \lambda_2 c_z)\hat k a (b c )=(a c )b (a b )c =(λ1bxλ2cxi^+(λ1byλ2cyj^+(λ1bzλ2czk^
    其中,
    λ 1 = a ⃗ ⋅ c ⃗ = a x c x + a y c y + a z c z \lambda_1 = \vec a \cdot \vec c = a_x c_x + a_y c_y + a_z c_z λ1=a c =axcx+aycy+azcz
    λ 2 = a ⃗ ⋅ b ⃗ = a x b x + a y b y + a z b z \lambda_2 = \vec a \cdot \vec b = a_x b_x + a_y b_y + a_z b_z λ2=a b =axbx+ayby+azbz

问题1.3 A(1,3,1), B(2, -1, 1), C(0, 1,3), D(1, 2, 4)

在这里插入图片描述
在这里插入图片描述

爱因斯坦求和约定(爱因斯坦符号)

a ⃗ = a 1 e ^ 1 + a 2 e ^ 2 + a 3 e ^ 3 = ∑ i = 1 3 a i e ^ i \vec a = a_1 \hat e_1 + a_2 \hat e_2 + a_3 \hat e_3 = \sum_{i=1}^3 a_i \hat e_i a =a1e^1+a2e^2+a3e^3=i=13aie^i

求和约定:
a ⃗ = a i e ^ i \boxed{\vec a = a_i \hat e_i} a =aie^i

指标符号

( a ⃗ ) i = a i = [ a 1 a 2 a 3 ] (\vec a)_i = a_i = \begin{bmatrix} a_1\\ a_2 \\ a_3 \end{bmatrix} (a )i=ai= a1a2a3

在这里插入图片描述

单元向量元素

a ^ = a ⃗ ∣ ∣ a ⃗ ∣ ∣ \hat a = \frac{\vec a}{||\vec a||} a^=∣∣a ∣∣a
元素为:
a ^ i = a i a 1 2 + a 2 2 + a 3 2 = a i a j a j \hat a_i = \frac{a_i}{\sqrt{a_1^2 + a_2^2 + a_3^2}} = \frac{a_i}{\sqrt{a_ja_j}} a^i=a12+a22+a32 ai=ajaj ai

自由指标:在整个表达式中只出现一次的下标(i)
哑指标: 在整个表达式中出现两次的下标(j)

表达式中一个下标只能出现一次或两次,如果出现三次及以上,表示严重的错误

点积

γ = a ⃗ ⋅ b ⃗ = a i b i \gamma = \vec a \cdot \vec b = a_i b_i γ=a b =aibi

问题1.4 用指标符号重写:

在这里插入图片描述

问题1.5 扩展: A i j x i x j A_{ij}x_ix_j Aijxixj

在这里插入图片描述

其他算子

Kronecker Delta δ i j \delta_{ij} δij

δ i j = { 1 i f f i = j 0 i f f i ≠ j \delta_{ij} = \begin{cases} 1 & iff & i = j \\ 0 & iff & i \neq j \end{cases} δij={10iffiffi=ji=j

e ^ i ⋅ e ^ j \hat e_i \cdot \hat e_j e^ie^j有同样的性质:
在这里插入图片描述
δ i j \delta_{ij} δij 的有趣性质:
δ i j V i = δ 1 j V 1 + δ 2 j V 2 + δ 3 j V 3 \delta_{ij} V_i = \delta_{1j}V_1 + \delta_{2j}V_2 + \delta_{3j}V_3 δijVi=δ1jV1+δ2jV2+δ3jV3
在这里插入图片描述
δ i j V i = V j \delta_{ij}V_i = V_j δijVi=Vj, Kronecker Delta 也被称作替换算子
其他的例子:
δ i j A i k = A j k \delta_{ij}A_{ik} = A_{jk} δijAik=Ajk
δ i j δ j i = δ i i = δ 11 + δ 22 + δ 33 \delta_{ij}\delta_{ji} = \delta_{ii} = \delta_{11} +\delta_{22} +\delta_{33} δijδji=δii=δ11+δ22+δ33
δ j i a j i = a i i \delta_{ji}a_{ji} = a_{ii} δjiaji=aii

向量在坐标系中的元素:
a ⃗ ⋅ e ^ i = a p e ^ p ⋅ e ^ i = a p δ p i = a i \vec a \cdot \hat e_i = a_p \hat e_p \cdot \hat e_i = a_p \delta_{pi} = a_i a e^i=ape^pe^i=apδpi=ai

所以利用以上式子,可以将向量表示成:
a ⃗ = a i e ^ i = ( a ⃗ ⋅ e ^ i ) e ^ i \vec a = a_i \hat e_i = (\vec a \cdot \hat e_i) \hat e_i a =aie^i=(a e^i)e^i

问题1.6 求以下表达式

在这里插入图片描述

置换符号

Levi-Civita symbol : ϵ i j k \epsilon_{ijk} ϵijk
ϵ i j k = { 1 i f i ( i , j , k ) = ( 1 , 2 , 3 ) , ( 2 , 3 , 1 ) , ( 3 , 1 , 2 ) − 1 i f i ( i , j , k ) = ( 1 , 3 , 2 ) , ( 3 , 2 , 1 ) , ( 2 , 1 , 3 ) 0 o f i = j , o r j = k , o r i = k \epsilon_{ijk} = \begin{cases} 1 & if & i(i,j,k) = {(1,2,3), (2, 3, 1), (3, 1, 2)} \\ -1 & if & i(i,j,k) = {(1,3,2), (3, 2, 1), (2, 1, 3)} \\ 0 & of & i=j , or j =k , or i=k \end{cases} ϵijk= 110ififofi(i,j,k)=(1,2,3),(2,3,1),(3,1,2)i(i,j,k)=(1,3,2),(3,2,1),(2,1,3)i=j,orj=k,ori=k

在这里插入图片描述
下标表示: ϵ i j k = 1 2 ( i − j ) ( j − k ) ( k − i ) \epsilon_{ijk} = \frac{1}{2}(i-j)(j-k)(k-i) ϵijk=21(ij)(jk)(ki)
根据定义可知:
在这里插入图片描述
利用Kronecker Delta 的性质,可以说明:
ϵ i j k = ϵ l m n δ l i δ m j δ k n \epsilon_{ijk} = \epsilon_{lmn}\delta_{li} \delta_{mj} \delta_{kn} ϵijk=ϵlmnδliδmjδkn

可以表示成行列式:
在这里插入图片描述
ϵ i j k ϵ p q r \epsilon_{ijk} \epsilon_{pqr} ϵijkϵpqr表示成:
在这里插入图片描述
由行列式的性质: det ⁡ ( A B ) = det ⁡ ( A ) det ⁡ ( B ) \det(AB) = \det(A) \det(B) det(AB)=det(A)det(B),可得:
在这里插入图片描述

当r = k, 有:
ϵ i j k ϵ p q k = δ i p δ j q − δ i q δ j p , i , j , k , p , q = 1 , 2 , 3 \boxed{\epsilon_{ijk} \epsilon_{pqk} = \delta_{ip}\delta_{jq} - \delta_{iq} \delta_{jp}, \quad i,j,k,p,q = 1, 2, 3} ϵijkϵpqk=δipδjqδiqδjp,i,j,k,p,q=1,2,3

问题1.7 证明:a) ϵ i j k ϵ p j k = 2 δ i p \epsilon_{ijk} \epsilon_{pjk} = 2\delta_{ip} ϵijkϵpjk=2δip, ϵ i j k ϵ i j k = 6 \epsilon_{ijk}\epsilon_{ijk}= 6 ϵijkϵijk=6; b)计算得到 ϵ i j k δ 2 j δ 3 k δ 1 i \epsilon_{ijk}\delta_{2j}\delta_{3k}\delta_{1i} ϵijkδ2jδ3kδ1i的值

在这里插入图片描述
向量叉积:
在这里插入图片描述
利用置换符号 ϵ i j k \epsilon_{ijk} ϵijk的定义:
在这里插入图片描述
向量的叉积可以通过置换符号表示:
a ⃗ ∧ b ⃗ = ϵ i j k a j b k e ^ i a j e ^ j ∧ b k e ^ k = a j b k ϵ i j k e ^ i a j b k ( e ^ j ∧ e ^ k ) = a j b k ϵ i j k e ^ i = a j b k ϵ j k i e ^ i \vec a \wedge \vec b = \epsilon_{ijk} a_j b_k \hat e_i \\ a_j \hat e_j \wedge b_k \hat e_k = a_j b_k \epsilon_{ijk}\hat e_i \\ a_j b_k (\hat e_j \wedge \hat e_k) = a_j b_k \epsilon_{ijk}\hat e_i = a_j b_k \epsilon_{jki}\hat e_i a b =ϵijkajbke^iaje^jbke^k=ajbkϵijke^iajbk(e^je^k)=ajbkϵijke^i=ajbkϵjkie^i

因此,有:
( e ^ j ∧ e ^ k ) = ϵ i j k e ^ i \boxed{(\hat e_j \wedge \hat e_k) = \epsilon_{ijk}\hat e_i} (e^je^k)=ϵijke^i

置换符号可以通过标量三重积与正交基联系起来:
( e ^ i ∧ e ^ j ) ⋅ e ^ k = ϵ i j m e ^ m ⋅ e ^ k = ϵ i j m δ m k = ϵ i j k (\hat e_i \wedge \hat e_j) \cdot \hat e_k = \epsilon_{ijm}\hat e_m \cdot \hat e_k = \epsilon_{ijm}\delta_{mk} = \epsilon_{ijk} (e^ie^j)e^k=ϵijme^me^k=ϵijmδmk=ϵijk

标量三重积:
λ = a ⃗ ⋅ ( b ⃗ ∧ c ⃗ ) = a i e ^ i ⋅ ( b j e ^ j ∧ c k e ^ k ) = a i b j c k e ^ i ⋅ ( e ^ j ∧ e ^ k ) = a i b j c k e ^ i ⋅ ϵ i j k e ^ i = ϵ i j k a i b j c k \lambda = \vec a \cdot (\vec b \wedge \vec c) = a_i\hat e_i \cdot(b_j\hat e_j \wedge c_k \hat e_k) = a_i b_j c_k \hat e_i \cdot(\hat e_j \wedge \hat e_k) \\ =a_i b_j c_k \hat e_i \cdot \epsilon_{ijk}\hat e_i = \epsilon_{ijk}a_i b_j c_k λ=a (b c )=aie^i(bje^jcke^k)=aibjcke^i(e^je^k)=aibjcke^iϵijke^i=ϵijkaibjck

所以,有:
λ = a ⃗ ⋅ ( b ⃗ ∧ c ⃗ ) = ϵ i j k a i b j c k , i , j , k = 1 , 2 , 3 \boxed{\lambda = \vec a \cdot (\vec b \wedge \vec c) = \epsilon_{ijk}a_ib_jc_k, \quad i,j,k = 1,2,3} λ=a (b c )=ϵijkaibjck,i,j,k=1,2,3

在这里插入图片描述
在这里插入图片描述

问题1.9 不使用向量叉积符号重写表达式 ( a ⃗ ∧ b ⃗ ) ⋅ ( c ⃗ ∧ d ⃗ ) (\vec a \wedge \vec b) \cdot (\vec c \wedge \vec d) (a b )(c d )

在这里插入图片描述
在这里插入图片描述

问题1.9 证明: ( a ⃗ ∧ b ⃗ ) ∧ ( c ⃗ ∧ d ⃗ ) = c [ d ⃗ ⋅ ( a ⃗ ∧ b ⃗ ) ] − d ⃗ [ c ⃗ ⋅ ( a ⃗ ∧ b ⃗ ) ] (\vec a \wedge \vec b) \wedge (\vec c \wedge \vec d) = c[\vec d \cdot (\vec a \wedge \vec b)] - \vec d[\vec c \cdot (\vec a \wedge \vec b)] (a b )(c d )=c[d (a b )]d [c (a b )]

在这里插入图片描述

问题1.10 a ⃗ , b ⃗ , c ⃗ \vec a, \vec b, \vec c a ,b ,c 为线性相关向量,证明:向量 v ⃗ = α a ⃗ + β b ⃗ + γ c ⃗ ≠ 0 ⃗ \vec v = \alpha \vec a + \beta \vec b + \gamma \vec c \neq \vec 0 v =αa +βb +γc =0

在这里插入图片描述

问题1.11 证明: a ⃗ ∧ ( b ⃗ ∧ c ⃗ ) = ( a ⃗ ⋅ c ⃗ ) b ⃗ − ( a ⃗ ⋅ b ⃗ ) c ⃗ \vec a \wedge (\vec b \wedge \vec c) = (\vec a \cdot \vec c) \vec b - (\vec a \cdot \vec b) \vec c a (b c )=(a c )b (a b )c

在这里插入图片描述

教材:
Eduardo W.V. Chaves, Notes On Continuum Mechanics

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值